DOI QR코드

DOI QR Code

Inhibitory effects of oroxylin A on endothelial protein C receptor shedding in vitro and in vivo

  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University) ;
  • Han, Min-Su (Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital) ;
  • Lee, Min Young (College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Lee, You-Mie (College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Bae, Jong-Sup (College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2013.09.02
  • Accepted : 2013.10.04
  • Published : 2014.06.30

Abstract

Endothelial cell protein C receptor (EPCR) plays important roles in blood coagulation and inflammation. EPCR activity is markedly changed by ectodomain cleavage and release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-${\alpha}$ converting enzyme (TACE). Oroxylin A (OroA), a major component of Scutellaria baicalensis Georgi, is known to exhibit anti-angiogenic, antiinflammation, and anti-invasive activities. However, little is known about the effects of OroA on EPCR shedding. Data showed that OroA induced potent inhibition of phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and on cecal ligation and puncture (CLP)-induced EPCR shedding through suppression of TACE expression and activity. In addition, treatment with OroA resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of OroA as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding.

Keywords

References

  1. Fukudome, K. and Esmon, C. T. (1994) Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J. Biol. Chem. 269, 26486- 26491.
  2. Fukudome, K., Kurosawa, S., Stearns-Kurosawa, D. J., He, X., Rezaie, A. R. and Esmon, C. T. (1996) The endothelial cell protein C receptor. Cell surface expression and direct ligand binding by the soluble receptor. J. Biol. Chem. 271, 17491-17498. https://doi.org/10.1074/jbc.271.29.17491
  3. Mosnier, L. O., Zlokovic, B. V. and Griffin, J. H. (2007) The cytoprotective protein C pathway. Blood 109, 3161- 3172. https://doi.org/10.1182/blood-2006-09-003004
  4. Esmon, C. T. (2004) Structure and functions of the endothelial cell protein C receptor. Crit. Care. Med. 32, S298-301. https://doi.org/10.1097/01.CCM.0000126128.64614.81
  5. Wang, L., Bastarache, J. A., Wickersham, N., Fang, X., Matthay, M. A. and Ware, L. B. (2007) Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am. J. Respir. Cell Mol. Biol. 36, 497-503. https://doi.org/10.1165/rcmb.2005-0425OC
  6. Xu, J., Qu, D., Esmon, N. L. and Esmon, C. T. (2000) Metalloproteolytic release of endothelial cell protein C receptor. J. Biol. Chem. 275, 6038-6044. https://doi.org/10.1074/jbc.275.8.6038
  7. Kurosawa, S., Stearns-Kurosawa, D. J., Hidari, N. and Esmon, C. T. (1997) Identification of functional endothelial protein C receptor in human plasma. J. Clin. Invest. 100, 411-418. https://doi.org/10.1172/JCI119548
  8. Kurosawa, S., Stearns-Kurosawa, D. J., Carson, C. W., D'Angelo, A., Della Valle, P. and Esmon, C. T. (1998) Plasma levels of endothelial cell protein C receptor are elevated in patients with sepsis and systemic lupus erythematosus: lack of correlation with thrombomodulin suggests involvement of different pathological processes. Blood 91, 725-727.
  9. Ghosh, S., Pendurthi, U. R., Steinoe, A., Esmon, C. T. and Rao, L. V. (2007) Endothelial cell protein C receptor acts as a cellular receptor for factor VIIa on endothelium. J. Biol. Chem. 282, 11849-11857. https://doi.org/10.1074/jbc.M609283200
  10. Lopez-Sagaseta, J., Montes, R., Puy, C., Diez, N., Fukudome, K. and Hermida, J. (2007) Binding of factor VIIa to the endothelial cell protein C receptor reduces its coagulant activity. J. Thromb. Haemost. 5, 1817-1824. https://doi.org/10.1111/j.1538-7836.2007.02648.x
  11. Menschikowski, M., Hagelgans, A., Eisenhofer, G. and Siegert, G. (2009) Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways. Exp. Cell Res. 315, 2673-2682. https://doi.org/10.1016/j.yexcr.2009.05.015
  12. Han, H., Du, B., Pan, X., Liu, J., Zhao, Q., Lian, X., Qian, M. and Liu, M. (2010) CADPE inhibits PMA-stimulated gastric carcinoma cell invasion and matrix metalloproteinase-9 expression by FAK/MEK/ERK-mediated AP-1 activation. Mol. Cancer Res. 8, 1477-1488. https://doi.org/10.1158/1541-7786.MCR-10-0114
  13. Leng, Y., Steiler, T. L. and Zierath, J. R. (2004) Effects of insulin, contraction, and phorbol esters on mitogen-activated protein kinase signaling in skeletal muscle from lean and ob/ob mice. Diabetes. 53, 1436-1444. https://doi.org/10.2337/diabetes.53.6.1436
  14. Huovila, A. P., Turner, A. J., Pelto-Huikko, M., Karkkainen, I. and Ortiz, R. M. (2005) Shedding light on ADAM metalloproteinases. Trends. Biochem. Sci. 30, 413-422. https://doi.org/10.1016/j.tibs.2005.05.006
  15. Murphy, G. (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat. Rev. Cancer 8, 929-941.
  16. Li, C., Lin, G. and Zuo, Z. (2011) Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharm. Drug. Dispos. 32, 427-445. https://doi.org/10.1002/bdd.771
  17. Li, H. N., Nie, F. F., Liu, W., Dai, Q. S., Lu, N., Qi, Q., Li, Z. Y., You, Q. D. and Guo, Q. L. (2009) Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology 257, 80-85. https://doi.org/10.1016/j.tox.2008.12.011
  18. Lu, Z., Lu, N., Li, C., Li, F., Zhao, K., Lin, B. and Guo, Q. (2012) Oroxylin A inhibits matrix metalloproteinase-2/9 expression and activation by up-regulating tissue inhibitor of metalloproteinase-2 and suppressing the ERK1/2 signaling pathway. Toxicol. Lett. 209, 211-220. https://doi.org/10.1016/j.toxlet.2011.12.022
  19. Sun, Y., Lu, N., Ling, Y., Gao, Y., Chen, Y., Wang, L., Hu, R., Qi, Q., Liu, W., Yang, Y., You, Q. and Guo, Q. (2009) Oroxylin A suppresses invasion through down-regulating the expression of matrix metalloproteinase-2/9 in MDA- MB-435 human breast cancer cells. Eur. J. Pharmacol. 603, 22-28. https://doi.org/10.1016/j.ejphar.2008.12.008
  20. Tseng, T. L., Chen, M. F., Tsai, M. J., Hsu, Y. H., Chen, C. P. and Lee, T. J. (2012) Oroxylin-A rescues LPS-induced acute lung injury via regulation of NF-kappaB signaling pathway in rodents. PLoS One. 7, e47403. https://doi.org/10.1371/journal.pone.0047403
  21. Borgel, D., Bornstain, C., Reitsma, P. H., Lerolle, N., Gandrille, S., Dali-Ali, F., Esmon, C. T., Fagon, J. Y., Aiach, M. and Diehl, J. L. (2007) A comparative study of the protein C pathway in septic and nonseptic patients with organ failure. Am. J. Respir. Crit. Care Med. 176, 878-885. https://doi.org/10.1164/rccm.200611-1692OC
  22. Qu, D., Wang, Y., Song, Y., Esmon, N. L. and Esmon, C. T. (2006) The Ser219- ->Gly dimorphism of the endothelial protein C receptor contributes to the higher soluble protein levels observed in individuals with the A3 haplotype. J. Thromb. Haemost. 4, 229-235.
  23. Qu, D., Wang, Y., Esmon, N. L. and Esmon, C. T. (2007) Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17. J. Thromb. Haemost. 5, 395-402. https://doi.org/10.1111/j.1538-7836.2007.02347.x
  24. Buras, J. A., Holzmann, B. and Sitkovsky, M. (2005) Animal models of sepsis: setting the stage. Nat. Rev. Drug. Discov. 4, 854-865. https://doi.org/10.1038/nrd1854
  25. Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H. E., Susarla, S. M., Ulloa, L., Wang, H., DiRaimo, R., Czura, C. J., Roth, J., Warren, H. S., Fink, M. P., Fenton, M. J., Andersson, U. and Tracey, K. J. (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. U.S.A. 101, 296-301. https://doi.org/10.1073/pnas.2434651100
  26. Thalhamer, T., McGrath, M. A. and Harnett, M. M. (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford). 47, 409-414.
  27. Bae, J. S. and Rezaie, A. R. (2011) Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 118, 3952-3959. https://doi.org/10.1182/blood-2011-06-360701
  28. Kim, D. C., Lee, W. and Bae, J. S. (2011) Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm. Res. 60, 1161-1168. https://doi.org/10.1007/s00011-011-0381-y
  29. Miller, M. A., Meyer, A. S., Beste, M. T., Lasisi, Z., Reddy, S., Jeng, K. W., Chen, C. H., Han, J., Isaacson, K., Griffith, L. G. and Lauffenburger, D. A. (2013) ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc. Natl. Acad. Sci. U.S.A. 110, E2074-2083. https://doi.org/10.1073/pnas.1222387110
  30. Wang, H., Liao, H., Ochani, M., Justiniani, M., Lin, X., Yang, L., Al-Abed, Y., Metz, C., Miller, E. J., Tracey, K. J. and Ulloa, L. (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10, 1216-1221. https://doi.org/10.1038/nm1124

Cited by

  1. Suppressive effects of dabrafenib on endothelial protein C receptor shedding vol.40, pp.2, 2017, https://doi.org/10.1007/s12272-016-0869-7
  2. Anti-inflammatory effects of vicenin-2 and scolymoside on polyphosphate-mediated vascular inflammatory responses vol.65, pp.3, 2016, https://doi.org/10.1007/s00011-015-0906-x
  3. Distribution patterns of the contents of five biologically activate ingredients in the root of Scutellaria baicalensis vol.15, pp.2, 2017, https://doi.org/10.1016/S1875-5364(17)30030-4
  4. Quinic acid derivatives from Salicornia herbacea alleviate HMGB1-mediated endothelial dysfunction vol.15, 2015, https://doi.org/10.1016/j.jff.2015.03.044
  5. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans vol.6, pp.1, 2016, https://doi.org/10.1038/srep21956
  6. Novel insight into drug repositioning: Methylthiouracil as a case in point vol.99, 2015, https://doi.org/10.1016/j.phrs.2015.06.008
  7. Induction of endothelium-dependent constriction of mesenteric arteries in endotoxemic hypotensive shock vol.173, pp.7, 2016, https://doi.org/10.1111/bph.13415
  8. Inhibitory effect of exendin-4 on secretory group IIA phospholipase A2 vol.459, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.02.165
  9. Methylthiouracil, a new treatment option for sepsis vol.88, 2017, https://doi.org/10.1016/j.vph.2015.07.013
  10. Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives vol.25, pp.19, 2015, https://doi.org/10.1016/j.bmcl.2015.07.079
  11. Inhibitory effect of polyozellin on secretory group IIA phospholipase A2 vol.39, pp.2, 2016, https://doi.org/10.1007/s12272-015-0694-4
  12. Ameliorative Effect of Vicenin-2 and Scolymoside on TGFBIp-Induced Septic Responses vol.38, pp.6, 2015, https://doi.org/10.1007/s10753-015-0199-9
  13. Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo vol.94, pp.3, 2016, https://doi.org/10.1139/cjpp-2015-0215
  14. Anti-inflammatory effects of methylthiouracil in vitro and in vivo vol.288, pp.3, 2015, https://doi.org/10.1016/j.taap.2015.08.009
  15. Inhibitory Effect of Orientin on Secretory Group IIA Phospholipase A2 vol.38, pp.4, 2015, https://doi.org/10.1007/s10753-015-0139-8
  16. In-depth proteomics approach of secretome to identify novel biomarker for sepsis in LPS-stimulated endothelial cells vol.36, pp.23, 2015, https://doi.org/10.1002/elps.201500198
  17. Dabrafenib, as a Novel Insight into Drug Repositioning Against Secretory Group IIa Phospholipase A2 vol.12, pp.4, 2016, https://doi.org/10.3923/ijp.2016.415.421
  18. Vascular barrier protective effects of baicalin, baicalein and wogonin in vitro and in vivo vol.281, pp.1, 2014, https://doi.org/10.1016/j.taap.2014.09.003
  19. Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo vol.64, pp.12, 2015, https://doi.org/10.1007/s00011-015-0886-x
  20. Inhibitory effects of three diketopiperazines from marine-derived bacteria on endothelial protein C receptor shedding in human endothelial cells and mice vol.110, 2016, https://doi.org/10.1016/j.fitote.2016.03.016
  21. Inhibitory effect of vicenin-2 and scolymoside on secretory group IIA phospholipase A2 vol.19, pp.5, 2015, https://doi.org/10.1080/19768354.2015.1087428
  22. Antiseptic Effects of New 3′-N-Substituted Carbazole Derivatives In Vitro and In Vivo vol.38, pp.4, 2015, https://doi.org/10.1007/s10753-015-0141-1
  23. Inhibitory effects of lysozyme on endothelial protein C 1receptor shedding in vitro and in vivo vol.48, pp.11, 2015, https://doi.org/10.5483/BMBRep.2015.48.11.038
  24. Antithrombotic and antiplatelet activities of orientin in vitro and in vivo vol.17, 2015, https://doi.org/10.1016/j.jff.2015.05.037
  25. Suppressive Effects of Pelargonidin on Endothelial Protein C Receptor Shedding via the Inhibition of TACE Activity and MAP Kinases vol.44, pp.04, 2016, https://doi.org/10.1142/S0192415X16500427
  26. PEGylated lysozymes with anti-septic effects in human endothelial cells and in mice vol.459, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.02.167
  27. Antitcoagulant and antiplatelet activities of scolymoside vol.48, pp.10, 2015, https://doi.org/10.5483/BMBRep.2015.48.10.044
  28. Role of moesin in HMGB1-stimulated severe inflammatory responses vol.114, pp.2, 2015, https://doi.org/10.1160/TH14-11-0969
  29. Suppressive effects of polyozellin on TGFBIp-mediated septic responses in human endothelial cells and mice vol.36, pp.4, 2016, https://doi.org/10.1016/j.nutres.2015.12.009
  30. Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibit endothelial protein C receptor shedding in vitro and in vivo vol.100, 2015, https://doi.org/10.1016/j.fitote.2014.12.002
  31. Antiseptic effect of vicenin-2 and scolymoside fromCyclopia subternata(honeybush) in response to HMGB1 as a late sepsis mediator in vitro and in vivo vol.93, pp.8, 2015, https://doi.org/10.1139/cjpp-2015-0021
  32. Overview of Oroxylin A: A Promising Flavonoid Compound vol.30, pp.11, 2016, https://doi.org/10.1002/ptr.5694
  33. Ameliorative effect of methylthiouracil on TGFBIp-induced septic responses vol.463, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.05.120
  34. Anti-Inflammatory Effects of Lysozyme Against HMGB1 in Human Endothelial Cells and in Mice vol.38, pp.5, 2015, https://doi.org/10.1007/s10753-015-0171-8
  35. Antithrombotic and antiplatelet activities of vicenin-2 vol.26, pp.6, 2015, https://doi.org/10.1097/MBC.0000000000000320
  36. Inhibitory effects of polyozellin from Polyozellus multiplex on HMGB1-mediated septic responses vol.64, pp.9, 2015, https://doi.org/10.1007/s00011-015-0856-3
  37. Principles in the design of ligand-targeted cancer therapeutics and imaging agents vol.14, pp.3, 2015, https://doi.org/10.1038/nrd4519
  38. Antithrombotic and antiplatelet activities of pelargonidin in vivo and in vitro vol.39, pp.3, 2016, https://doi.org/10.1007/s12272-016-0708-x
  39. Suppressive effects of polyozellin on endothelial protein C receptor shedding via inhibiting TACE activity and MAP kinases vol.108, 2016, https://doi.org/10.1016/j.fitote.2015.11.005