DOI QR코드

DOI QR Code

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A. (Department of Chemical Engineering, Indian Institute of Technology Madras) ;
  • Natarajan, Upendra (Department of Chemical Engineering, Indian Institute of Technology Madras) ;
  • Nagarajan, Ramamurthy (Department of Chemical Engineering, Indian Institute of Technology Madras)
  • Received : 2014.01.08
  • Accepted : 2014.06.20
  • Published : 2014.06.25

Abstract

Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Keywords

References

  1. Alexandre, M. and Dubois, P. (2000), "Polymer-layered silicate nanocomposites: preparation, properties and uses of new classes of materials", Mat. Sci. Eng., 28, 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
  2. Afsharimani, N.S., Zad, A.I., Tafreshi, M.J. and Salartayefeh, S. (2010), "Synthesis and characterisation of alumina flakes/polymer composites", J. Appl. Polym. Sci., 115, 3716 -3720. https://doi.org/10.1002/app.31410
  3. Ash, B.J., Seigel, R.W. and Schadler, L.S. (2004), "Mechanical behaviour of alumina/ (polymethyl meth acrylate) nanocomposites" , Macromol., 37, 1358 -1369 https://doi.org/10.1021/ma0354400
  4. Bittman, B., Haupert, F. and Schlarb, A.K. (2011), "Preparation of $TiO_{2}$/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship", Ultrason. Sonochem., 18, 120-125. https://doi.org/10.1016/j.ultsonch.2010.03.011
  5. Chen, J., Zhou, Y.M., Nan, Q.L., Ye, X.Y., Sun, Y.Q., Wang, Z.Q. and Zhang, S.M. (2008), "Synthesis and characterization of polyurethane/CdS-$SiO_{2}$ nanocomposites via ultrasonic process", App. Surf. Sci., 255, 2244-2250. https://doi.org/10.1016/j.apsusc.2008.07.089
  6. Contamine, F., Faid, F., Wilhelm, A.M., Berlan, J. and Delmas, H. (1994) "Chemical reactions under ultrasound:discrimination of chemical and physical effects", Chem. Eng. Sci., 49, 5864-5873.
  7. Giannelis, E.P. (1996), "Polymer layered silicate nanocomposites", Adv. Mater., 8, 29-34. https://doi.org/10.1002/adma.19960080104
  8. Gopi, K.R. and Nagarajan, R. (2008), "Advances in nanoalumina ceramic particle fabrication using sonofragmentation", IEEE Trans. Nanotech., 7, 532-537. https://doi.org/10.1109/TNANO.2008.2002985
  9. Horst, C., Chen, Y.Z., Kunz, U. and Hoffmann, U. (1996), "Design modelling and performance of a novel sono- chemical reactor for heterogenous reactions", Chem. Eng. Sci., 51, 1837-1846. https://doi.org/10.1016/0009-2509(96)00227-8
  10. Isayev, A.I., Kumar, R. and Lewis, T.M. (2005), "Ultrasound assisted twin screw extrusion of polymer nanocomposites containing carbon nanotubes", Polymer, 50, 250-260.
  11. Kass, M.D., Kiggans, Jr. J.O. and Meek, T.T. (1996), "Ultrasonic modification of alumina powder during wet ball milling", Mater. Lett., 26, 241-243. https://doi.org/10.1016/0167-577X(95)00226-X
  12. Kausch, H.H. and Michler, G.H. (2007), "Effect of nanoparticle size and size-distribution on mechanical behaviour of filler amorphous, thermoplastic polymers", J. Appl. Polym. Sci., 105, 2577-2587. https://doi.org/10.1002/app.26570
  13. Koo, J.H. (2006), Polymer Nanocomposites: Processing, Characterization, Applications, McGraw Hill, New York, USA.
  14. Lee, E.C., Mielewski, D.F. and Baird, R.J.(2004), "Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication", Polym. Eng. Sci., 44, 1773-1782. https://doi.org/10.1002/pen.20179
  15. Li, S., Lin, M.M., Toprak, M.S., Kim, D. K. and Muhammed, M. (2010), "Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications", Nano reviews, 1, 5214-5233. https://doi.org/10.3402/nano.v1i0.5214
  16. Lighthill, J. (1978), "Acoustic Streaming", J. Sound. Vib., 61 (3), 319-418.
  17. Little, C., Hepher, M.J. and El-Sherriff, M. (2002), "The sono-degradation of phenanthrene in an aqueous environment", Ultrason., 40, 667-674. https://doi.org/10.1016/S0041-624X(02)00196-8
  18. Manaz-Zloczower, I. (1997), "Analysis of mixing in polymer processing equipment", www.rheology.org/sor/publications/rheology_b/Jan97/mixing.pdf.
  19. Mason, T.J., Collings, V. and Sumel, A. (2004), "Sonic and ultrasonic removal of chemical contaminants from soil in laboratory and on a large scale", Ultrason. Sonochem., 11, 205-210. https://doi.org/10.1016/j.ultsonch.2004.01.025
  20. Nagarajan, R. (1995), Particles on Surfaces 4: Detection, Adhesion, Removal, Ed. K.L. Mittal, Marcel Dekker, New York, US.
  21. Nahin, P.G. and Backlund, P.S. (1963), "Organoclay polyolefin compositions", Patent No. 30841179, Assigned to Union Oil Company.
  22. Okitzu, K., Iwasaki, K., Yobiko, Y., Bandow, H., Nishimura, R. and Maeda, Y. (2005), "Sono-chemical degradation of azo-dyes in aqueous solution: a new heterogeneous model taking into account the local concentration of OH radical and azo-dyes", Ultrason Sonochem., 12, 255-262. https://doi.org/10.1016/j.ultsonch.2004.01.038
  23. Philip, M.A., Natarajan, U. and Nagarajan, R. (2012), "Sono-synthesis of polystyrene alumina nanocomposites", J. Nanoeng. Nanosys., 226, 157-164.
  24. Ray, S.S. and Okamoto, M. (2003), "Polymer/layered silicate nanocomposites: a review from preparation to processing", Prog. Polym. Sci., 28, 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  25. Riley, N. (1998), "Acoustic Streaming", Theoret. Comput. Fluid. Dyn., 10, 349-356. https://doi.org/10.1007/s001620050068
  26. Ryu, J.G., Park, S.W., Kim, H. and Lee, J.W. (2004), "Power ultrasound effects for in-situ compatibilization of polymer/clay nanocomposites", Mat. Sci. Eng. C., 24, 285-288. https://doi.org/10.1016/j.msec.2003.09.057
  27. Siengchin, S., Kocsis, J.K. and Thomann, R. (2007), "Alumina-filled polystyrene micro- and nanocomposites, prepared by melt-mixing with and without latex precompounding: structure and. properties", J. Appl. Polym Sci., 105, 2963-2972. https://doi.org/10.1002/app.26505
  28. Simon, G.P., Yun, S.I., Attard, D., Lo, V., Davis, J., Li, H., Latella, B., Tsevtkov, F., Noorman, H., Moricca, S., Knott, R., Hanley, H., Morcom, M. and Gadd, G.E. (2008), "Spray-dried microspheres as a route to clay/polymer nanocomposites", J. Appl. Polym. Sci., 108, 1550-1556. https://doi.org/10.1002/app.27585
  29. Suslick, K.S. (1989), "The chemical effects of ultrasound", Sci. Am., 260, 80- 86.
  30. Suslick, K.S. and Doktycs S.J.J. (1990), "Sounding out new chemistry", New Sci.,1702, 50-53.
  31. Swain, S.K. and Isayev, A.I. (2007), "Effect of ultrasound on HDPE/clay nanocomposites: rheology, structure and properties", Polymer, 48, 281-289. https://doi.org/10.1016/j.polymer.2006.11.002
  32. Swain, S.K. and Isayev, A.I. (2009), "PA6/clay nanocomposites by continuous sonication process", J. Appl. Pol. Sci., 114, 2378-2387. https://doi.org/10.1002/app.30827
  33. Tan, X., Xu, Y., Cai, N. and Jia, G. (2009), "Polypropylene/silica nanocomposites prepared by in-situ melt ultra- sonication", Polym. Compos., 30(6), 835-841. https://doi.org/10.1002/pc.20598
  34. Zhang, K., Park, B.J., Fang, F.F. and Choi, H.J. (2009), "Sonochemical preparation of polymer nanocomposites", Molecules, 14, 2095-2110. https://doi.org/10.3390/molecules140602095
  35. Zhao, L., Li, J., Guo, S. and Du, Q. (2006), "Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites", Polymer, 47, 2460-2469. https://doi.org/10.1016/j.polymer.2006.02.011
  36. Zunjarrao, S.C., Sriraman, R. and Singh, R.P. (2006), "Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites", J. Mat. Sci., 41, 2219-2228. https://doi.org/10.1007/s10853-006-7179-2

Cited by

  1. Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles vol.6, pp.4, 2015, https://doi.org/10.12989/mwt.2015.6.4.309
  2. Use of PVA/α-MnO 2 -stearic acid nanocomposite films prepared by sonochemical method as a potential sorbent for adsorption of Cd (II) ion from aqueous solution vol.37, 2017, https://doi.org/10.1016/j.ultsonch.2017.02.025
  3. Study on thermal, mechanical and adsorption properties of amine-functionalized MCM-41/PMMA and MCM-41/PS nanocomposites prepared by ultrasonic irradiation vol.39, 2017, https://doi.org/10.1016/j.ultsonch.2017.06.001
  4. Microwave and ultrasound-assisted synthesis of poly(vinyl chloride)/riboflavin modified MWCNTs: Examination of thermal, mechanical and morphology properties vol.41, 2018, https://doi.org/10.1016/j.ultsonch.2017.09.018
  5. Synthesis of benzamides through direct condensation of carboxylic acids and amines in the presence of diatomite earth@IL/ZrCl4 under ultrasonic irradiation pp.1568-5675, 2018, https://doi.org/10.1007/s11164-018-3592-9
  6. In situ synthesis of nanocomposite materials based on modified-mesoporous silica MCM-41 and methyl methacrylate for copper (II) adsorption from aqueous solution pp.1735-2428, 2019, https://doi.org/10.1007/s13738-019-01628-z
  7. Sonochemical synthesis of aluminium and aluminium hybrids for remediation of toxic metals vol.70, pp.None, 2014, https://doi.org/10.1016/j.ultsonch.2020.105299