DOI QR코드

DOI QR Code

고온에 노출된 초고강도 콘크리트의 압축특성

Compressive Properties of Ultra High Strength Concrete Exposed to High Temperature

  • 강용학 (경북대학교 건축토목공학부) ;
  • 강충현 (경북대학교 건축토목공학부) ;
  • 최현국 (경북대학교 건축토목공학부) ;
  • 신현준 (한국건설기술연구원 화재안전연구센터) ;
  • 김화중 (경북대학교 건축토목공학부)
  • Kang, Yong-Hak (School of Architecture & Architectural Engineering, Kyungpook National University) ;
  • Kang, Choong-Hyun (School of Architecture & Architectural Engineering, Kyungpook National University) ;
  • Choi, Hyun-Guk (School of Architecture & Architectural Engineering, Kyungpook National University) ;
  • Shin, Hyun-Jun (Fire Research Center, Korea Institute of Construction Technology) ;
  • Kim, Wha-Jung (School of Architecture & Architectural Engineering, Kyungpook National University)
  • 투고 : 2014.04.17
  • 심사 : 2014.06.02
  • 발행 : 2014.06.30

초록

최근의 건축 구조물이 고층화, 대형화됨에 따라 초고강도 콘크리트의 적용 및 수요가 증가하고 있는 추세이나, 화재에 대한 취약성을 가지고 있는 초고강도 콘크리트의 열적 특성에 대한 검토는 아직 충분하지 않으며 이에 대한 성능 검토 또한 요구되고 있는 실정이다. 이에 이 논문에서는 초고강도 콘크리트의 고온 재료 모델 개발에 대한 기초적 자료를 제공하기 위하여 상온에서 $800^{\circ}C$까지의 고온 가열을 받은 100 MPa급 초고강도 콘크리트를 대상으로 가열온도의 변화에 따른 잔존압축강도, 탄성계수 및 응력-변형 성상, 반복하중 시의 응력-변형 성상 등 역학적 특성 변화를 확인하였다. 또한, TG/DTA분석과 SEM 촬영으로 콘크리트의 화학 물리적 특성을 확인하고 국내 외의 기존 연구와 비교 검토하였다. 그 결과, 가열온도 $300^{\circ}C$에서 잔존압축강도 및 탄성계수의 급격한 저하를 확인하였으며, 반복하중 하에서는 가열온도 $400^{\circ}C$부터 소성거동이 발생하는 것과 함께 단일하중과 거의 동일한 경향을 보임을 확인할 수 있었다. TG/DTA 분석 및 SEM 촬영을 실시한 결과와 기존 연구를 비교 검토한 결과, 콘크리트 내부 조직의 열화와 수분 증발 및 화학반응 등으로 인하여 잔존압축강도 및 탄성계수의 저하가 일어났음을 확인할 수 있었다.

Recently, the trend toward larger architectural structures continues and accelerates demand for Ultra High Strength Concrete (UHSC) which satisfies structural performance. However, UHSC has weakness in fire and the performance tests are required. In this paper, the change of mechanical properties of 100 MPa grade UHSC exposed to high temperatures ($20^{\circ}C{\sim}800^{\circ}C$) was observed to develop high temperature material model of UHSC: residual compressive strength, modulus of elasticity, property of stress-strain on monotonous loading and property of stress-strain on cyclic loading. In addition, TG/DTA and SEM Images analyses were performed to investigate chemical and physical characteristics of UHSC, and the results of this research were compared with those of previous studies. As a result, UHSC at the heating temperature of $300^{\circ}C$ showed a sharp decrease of residual compressive strength and modulus of elasticity. And It was shown that UHSC had a plastic behavior at more than $400^{\circ}C$ on the cyclic loading and revealed a same tendency in both monotonous and cyclic loading of all heating temperatures. In addition, through TG/DTA and SEM images analyses compared with those from previous studies, it was shown that the deterioration of concrete inner tissue, water evaporation and chemical reaction caused the decrease of residual compressive strength and modulus of elasticity.

키워드

참고문헌

  1. Han, C. G., Yang, S. H., Han, M. C., and Pei, C. C., "Spalling Prevention of High Strength Concrete with 60-100 MPa of the Compressive Strength Corresponding to the Addition of Polypropylene Fiber," Journal of the Architectural Institute of Korea: Structure & Construction, Vol. 24, No. 4, 2008, pp. 91-98.
  2. Kim, G. Y., "The Present Situation for Material Performance and Development of Ultra High Strength Concrete (초 고강도 콘크리트의 재료적 성능 및 개발 현황) [in Korean]," Lotte Technological Journal, No. 53, 2006, pp. 3-21.
  3. Furumura, F., "Studies on the Stress-Strain Relationship in Compression of Concrete at High Temperatures (I)," Transactions of the Architectural Institute of Japan, No. 172, 1970, pp. 11-18.
  4. Furumura, F., "Studies on the Stress-Strain Relationship in Compression of Concrete at High Temperatures (II)," Transactions of the Architectural Institute of Japan, No. 173, 1970, pp. 1-7.
  5. Furumura, F., "Studies on the Stress-Strain Relationship in Compression of Concrete at High Temperatures (III)," Transactions of the Architectural Institute of Japan, No. 174, 1970, pp. 11-18.
  6. Furumura, F., Oh, C. H., Ave, T., and Kim, W. J., "Simple Formulation for Stress-Strain Relation of Concrete at Elevated Temperature," Journal of Structural and Construction Engineering, AIJ, No. 384, 1988, pp. 1-14.
  7. Nishida, H., Yokosuka, S., Matsudo, M., and Katayose, N., "Structure Strength and Mechanical Properties Exposed to High-Temperature of Ultra High Strength Concrete (超高強度コソクリートの構造体強度と高溫加熱後の力学的性質) [in Japanese]," Proceedings of the Japan Concrete Institute, Vol. 26, No. 1, 2004, pp. 393-398.
  8. Kim, S. S. and Kim, S. S., "Strength Properties of the Fiber Mixed High Strength Concrete at Elevated Temperature," Journal of the Korea Institute of Building Construction, Vol. 8, No. 5, 2008, pp. 53-58. https://doi.org/10.5345/JKIC.2008.8.5.053
  9. Han, M. C. and Choi, H. K., "The Effect on Mechanical Properties and Micro-structure of High Strength Concrete at Elevated Temperatures," Journal of the Architectural Institute of Korea :Structure & Construction, Vol. 27, No. 3, 2011, pp. 123-130.
  10. Song, H. and Soh, Y. S., "Variation of Pore Structure of High Strength Concrete Including Silica Fume Exposed to High Temperature," Journal of the Korea Concrete Institute, Vol. 16, No. 5, 2004, pp. 597-604. https://doi.org/10.4334/JKCI.2004.16.5.597
  11. Song, H., Mun, K. J., and Soh, Y. S., "Mechanical Properties and Pore Structure of Cement Matrix at High Temperature," Journal of the Architectural Institute of Korea :Structure & Construction, Vol. 20, No. 1, 2004, pp. 107-114.
  12. Yun, H. D., Kim, G. Y., and Han, B. C., "Strength Properties of High-Strength Concrete Exposed at High Temperature," Journal of the Korea Concrete Institute, Vol. 14, No. 5, 2002, pp. 698-707. https://doi.org/10.4334/JKCI.2002.14.5.698
  13. Kim, W. S., Kang, H. K., and Kim, W. J., "State-ofthe-Art Research and Experimental Assessment on Fire- Resistance Properties of High Strength Concrete," Journal of The Korea Institute for Structural Maintenance and Inspection, Vol. 18, No. 3, 2014, pp. 28-39. (doi: http://dx.doi.org/10.11112/jksmi.2014.18.3.028)
  14. Miyamoto, K. and Ave, T., "Mechanical Properties of High Strength Concrete at High Temperatures," J. Struct. Constr. Eng., AIJ, No. 574, 2003, pp. 227-234.
  15. Architectural Institute of Japan, Guide Book for Fire-Resistive Performance of Structural Materials, 2004. pp. 22-67.

피인용 문헌

  1. An Experimental Study on the Residual Compressive Strength of PCM Depending on Temperature Variations vol.15, pp.5, 2015, https://doi.org/10.5345/JKIBC.2015.15.5.483