DOI QR코드

DOI QR Code

Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel

유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증

  • 한재준 (고려대학교 기계공학과) ;
  • 배경동 (고려대학교 기계공학과) ;
  • 김윤재 (고려대학교 기계공학과) ;
  • 김종현 (한국전력기술 전력기술연구소) ;
  • 김낙현 (한국원자력연구원 고속로설계부)
  • Received : 2014.02.22
  • Accepted : 2014.05.28
  • Published : 2014.07.01

Abstract

This paper describes multi-scale based ductile fracture simulation using finite element (FE) damage analysis. The maximum and crack initiation loads of cracked components were predicted using proposed virtual testing method. To apply the local approach criteria for ductile fracture, stress-modified fracture strain model was adopted as the damage criteria with modified calibration technique that only requires tensile and fracture toughness test data. Element-size-dependent critical damage model is also introduced to apply the proposed ductile fracture simulation to large-scale components. The results of the simulation were compared with those of the tests on SA333 Gr. 6 full-scale pipes at $288^{\circ}C$, performed by the Battelle Memorial Institute.

본 논문은 유한요소 기반 다중스케일 연성파손모사 기법을 이용하여 결함이 존재하는 실배관의 파괴거동을 예측한다. 수정응력 파괴변형률 모델을 손상기준으로 선정하고 유한요소 손상해석을 통해 균열진전을 모사한다. 기준식의 결정에는 인장시험과 파괴인성시험 결과만이 요구되며 온도 $288^{\circ}C$ SA333 Gr. 6 탄소강에 적용하여 결과를 제시하였다. 요소크기-의존성 임계손상모델을 도입하여 손상해석의 수치해석적인 불안정성을 개선하였다. 본 연구에서 제안하는 가상시험법의 검증을 위해 미국 바텔 연구소에서 수행한 실배관 실험결과와 예측결과를 비교한다.

Keywords

References

  1. ASTM Standard E1820-11e1, 2011, "Standard Test Method for Measurement of Fracture Toughness," ASTM International, West Conshohocken, PA, 2011, DOI: 10.1520/E1820-11E01, www.astm.org.
  2. ASTM Standard E8/E8M-11, 2011, "Standard Test Method for Tension Testing of Metallic Materials," ASTM International, West Conshohocken, PA, 2011, DOI: 10.1520/E0008_E0008M-11, www.astm.org.
  3. McClintock, F. A., 1968, "A Criterion for Ductile Fracture by the Growth of Holes," Journal of Applied Mechanics Vol. 35, No. 2, pp. 363-371. https://doi.org/10.1115/1.3601204
  4. Rice, J. R. and Tracey, D. M., 1969, "On the Ductile Enlargement of Voids in Triaxial Stress Fields," Journal of the Mechanics and Physics of Solids, Vol. 17, No. 3, pp. 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  5. Hancock, J. W. and Mackenzie, A. C., 1976, "On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States," Journal of the Mechanics and Physics of Solids Vol. 24, No. 2-3, pp. 147-160. https://doi.org/10.1016/0022-5096(76)90024-7
  6. Arndt, J. and Dahl, W., 1997, "Effect of Void Growth and Shape on the Initiation of Ductile Failure of Steels," Computational Materials Science, Vol. 9, No. 1-2, pp. 1-6. https://doi.org/10.1016/S0927-0256(97)00052-9
  7. Kanvinde, A. and Deierlein, G., 2006, "The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels," Journal of Structural Engineering, Vol. 132, No. 12, pp. 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907)
  8. Oh, C.-K., Kim, Y.-J., Baek, J.-H., Kim, Y.-P. and Kim, W., 2007, "A Phenomenological Model of Ductile Fracture for API X65 Steel," International Journal of Mechanical Sciences Vol. 49, No. 12, pp. 1399-1412. https://doi.org/10.1016/j.ijmecsci.2007.03.008
  9. Oh, C.-S., Kim, N.-H., Kim, Y.-J., Baek, J.-H., Kim, Y.-P. and Kim, W.-S., 2011, "A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model," Engineering Fracture Mechanics Vol. 78, No. 1, pp. 124-137. https://doi.org/10.1016/j.engfracmech.2010.10.004
  10. Kim, N.-H., Oh, C.-S. and Kim, Y.-J., 2011, "A Numerical Method to Simulate Ductile Failure of Tensile Plates with Interacting Through-Wall Cracks," Fatigue & Fracture of Engineering Materials & Structures, Vol. 34, No. 3, pp. 215-226. https://doi.org/10.1111/j.1460-2695.2010.01514.x
  11. Kim, N.-H., Oh, C.-S., Kim, Y.-J., Yoon, K.-B. and Ma, Y.-H., 2011, "Comparison of Fracture Strain Based Ductile Failure Simulation with Experimental Results," International Journal of Pressure Vessels and Piping Vol. 88, No. 10, pp. 434-447. https://doi.org/10.1016/j.ijpvp.2011.07.006
  12. Kim, J. H., Kim, N. H., Kim, Y. J., Hasegawa, K. and Miyazaki, K., 2013, "Ductile Fracture Simulation of 304 Stainless Steel Pipes with Two Circumferential Surface Cracks," Fatigue & Fracture of Engineering Materials & Structures, Vol.36, No.10, pp. 1067-1080 https://doi.org/10.1111/ffe.12072
  13. Pipe Fracture Encyclopedia, Volume 3: Pipe Fracture Test Data, Battelle, Columbus, 1997.
  14. Abaqus 6.11, Analysis User's Manual, Dassault Systemes Simulia Corp., Providence, RI, 2011.
  15. Ewing, D. and Hill, R., 1967, "The Plastic Constraint of V-Notched Tension Bars," Journal of the Mechanics and Physics of Solids, Vol. 15, No. 2, pp. 115-124. https://doi.org/10.1016/0022-5096(67)90021-X
  16. Bridgman, P. W., 1952, Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill.
  17. ASM Handbook, 1992, "Friction, Lubrication and Wear Technology," American Society for Metals, Vol. 18.
  18. Blau, P. J., 2012, Friction Science and Technology: from Concepts to Applications, CRC press.

Cited by

  1. Evaluation of the Effect of Fracture Resistance Curve Change Owing to the Presence or Absence of Side Groove in C(T) Specimen on Finite Element Failure Model Parameter Determination vol.40, pp.6, 2016, https://doi.org/10.3795/KSME-A.2016.40.6.539