DOI QR코드

DOI QR Code

Film Insert Molding of Automotive Door Grip Using Injection-Compression Molding

사출압축성형을 이용한 자동차용 도어그립 필름인서트성형

  • Lee, Ho Sang (Dept. of Aeronautical & Mechanical Design Engineering, Korea Nat'l Univ. of Transportation) ;
  • Yoo, Young Gil (Dept. of Aeronautical & Mechanical Design Engineering, Korea Nat'l Univ. of Transportation) ;
  • Kim, Tae An (Dongwon Tech. Co., Ltd.)
  • 이호상 (한국교통대학교 항공기계설계학과) ;
  • 유영길 (한국교통대학교 항공기계설계학과) ;
  • 김태안 ((주)동원테크)
  • Received : 2014.03.22
  • Accepted : 2014.05.12
  • Published : 2014.07.01

Abstract

Injection-compression molding was used for film insert molding of an automotive door grip using films with three-dimensional embossed patterns. A vacuum mold was fabricated for vacuum-assisted thermoforming of the film, and an injection-compression mold was developed for film insert molding. Three pressure transducers were installed inside the mold cavity to measure cavity pressures. Injection-compression molding experiments under various compression strokes and toggle speeds were performed to investigate their effects on the cavity pressure and heights of the embossed patterns. The compression stroke of 0.9mm and low toggle speed resulted in a higher degree of conservation of embossed patterns. Additionally, the processing conditions for the maximum heights of embossed patterns were almost similar to those for minimum integral value of cavity pressures. The injection-compression molding process presents the opportunity to impart a soft-touch feeling of plastic parts printed with embossed patterns.

자동차용 도어그립을 대상으로 하여 3 차원 엠보 패턴이 인쇄된 필름을 적용한 인서트성형을 구현하기 위하여 사출압축성형을 사용하였다. 진공금형을 제작하여 필름 열성형을 하였으며, 필름인서트성형을 위하여 사출압축금형을 개발하였다. 3 개의 압력센서를 설치하여 금형 캐비티압력을 측정하였으며, 다양한 압축스트로크와 토글속도에 대한 사출압축성형 실험을 수행하여, 공정조건이 캐비티 압력과 엠보 패턴의 높이에 미치는 영향을 고찰하였다. 압축스트로크 0.9mm와 느린 토글속도에서 엠보 패턴의 유지율이 높게 나타났다. 또한 엠보패턴이 최대 높이를 갖기 위한 공정조건은 캐비티 압력의 적분값이 최소가 되는 조건과 거의 동일하였다. 사출압축성형을 사용하여 엠보 패턴이 인쇄된 소프트한 촉감을 갖는 플라스틱 제품을 구현할 수 있다.

Acknowledgement

Supported by : 한국연구재단

References

  1. Leong, Y. W., Yamaguchi, S., Mizoguchi, M., Hamada, H., Ishiaku, U. S. and Tsujii, T., 2004, "The Effect of Molding Conditions on Mechanical and Morphological Properties at the Interface of Film Insert Injection Molded Polypropylene- Film/Polypropylene Matrix," Polym. Eng. Sci., Vol. 44, No. 12, pp. 2327-2334. https://doi.org/10.1002/pen.20260
  2. Leong, Y. W., Umemura, T. and Hamada, H., 2008, "Film Insert Molding as a Novel Weld-Line Inhibition and Strengthening Technique," Polym. Eng. Sci., Vol. 48, No. 11, pp. 2147-2158. https://doi.org/10.1002/pen.21157
  3. Oh, H. J., Song, Y. S., Lee, S. H. and Youn, J. R., 2009, "Development of Warpage and Residual Stresses in Film Insert Molded Parts," Polym. Eng. Sci., Vol. 49, No. 7, pp. 1389-1399. https://doi.org/10.1002/pen.21354
  4. Baek, S. J., Kim, S. Y., Lee, S. H., Youn, J. R. and Lee, S. H., 2008, "Effect of Processing Conditions on Warpage of Film Insert Molded Parts," Fiber. Polym., Vol. 9, No. 6, pp. 747-754. https://doi.org/10.1007/s12221-008-0117-y
  5. Kim, S.Y., Oh, H. J., Kim, S. H., Kim, C. H., Lee, S. H. and Youn, J. R., 2008, "Prediction of Residual Stress and Viscoelastic Deformation of Film Insert Molded Parts," Polym. Eng. Sci., Vol. 48, No. 9, pp. 1840-1847. https://doi.org/10.1002/pen.21152
  6. Kim, S. Y., Kim, S. H., Oh, H. J., Lee, S. H., Baek, S. J., Youn, J. R. , Lee, S. H. and Kim, S. W., 2008, "Molded Geometry and Viscoelastic Behavior of Film Insert Molded Parts," J. Appl. Polym., Vol. 111, No. 2, pp. 642-650.
  7. Chen, S.-C., Li, H.-M., Huang, S.-T. and Wang, Y.-C., 2010, "Effect of Decoration Film on Mold Surface Temperature During In-Mold Decoration Injection Molding Process," Int. Comm. Heat Mass Trans., Vol. 37, No. 5, pp. 501-505. https://doi.org/10.1016/j.icheatmasstransfer.2010.01.005
  8. Miura, T., 2009, "The Development and Progress of the Three-Dimensional Overlay Method(TOM)," J. Imaging Soc. Japan, Vol. 48, No.4, pp. 277-284.
  9. Isayev, A. I., 2000, Molding Processes in Handbook of Industrial Automation. Shell, R.L., Hall, E.L. (Eds.), Marcel Dekker, New York, pp. 573-606.
  10. Klepek, G., 1987, "Manufacturing Optical Lens by Injection Compression Molding," Kunststoffe, Vol. 77, p. 13.
  11. Yang, S. Y. and Chen, Y. C., 1998, "Experimental Study of Injection-Charged Compression Molding of Thermoplastic," Advances in Polymer Technology, Vol. 17, No. 4, pp. 353-360. https://doi.org/10.1002/(SICI)1098-2329(199824)17:4<353::AID-ADV6>3.0.CO;2-Q
  12. Yang, Y. and Ke, M. Z., 1993, "Experimental Study of Injection Compression Molding," SPE ANTEC'93, pp. 2182-2187.
  13. Yang, S. Y. and Ke, M. Z., 1995, "Experimental Study on the Effects of Adding Compression to Injection Molding Process," Advances in Polymer Technology, Vol. 14, pp. 15-24. https://doi.org/10.1002/adv.1995.060140102
  14. Michaeli, W. and Wielpuetz, M., 2000, "Optimization of the Optical Quality of Polymer Glasses in the Injection Compression Molding Process," Macromol. Mater. Eng., Vol. 284/285, pp. 8-13. https://doi.org/10.1002/1439-2054(20001201)284:1<8::AID-MAME8>3.3.CO;2-T
  15. Lee, H. S., Jeon, W. T. and Kim, S. W., 2013, "Development of Plastic Lenses for High-Resolution Phone Camera by Injection-Compression Molding," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 1, pp.39-46. https://doi.org/10.3795/KSME-A.2013.37.1.039
  16. Lee , H.-S. and Yoo, Y.-G., 2013, "Numerical and Experimental Analysis of Laminated-Film Thickness Variation in Vacuum-Assisted Thermoforming," Trans. Mater. Process., Vol.22, No.3, pp.171-177. https://doi.org/10.5228/KSTP.2013.22.3.171
  17. Lee , H.-S. and Yoo, Y.-G., 2014, "Experimental Study of Injection-Compression Molding of Film Insert Molded Plates," International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 3, pp. 455-461. https://doi.org/10.1007/s12541-014-0357-2

Cited by

  1. Effect of Nitriding on Fatigue Characteristics of Cr-Mo Alloy Steel vol.39, pp.6, 2015, https://doi.org/10.3795/KSME-A.2015.39.6.597
  2. Optimization of process variables for improvement of seat-backboard peel strength using response surface design method vol.31, pp.12, 2017, https://doi.org/10.1007/s12206-017-1135-8