DOI QR코드

DOI QR Code

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon (Constructional and Environmental Engineering, Kyungpook National University) ;
  • Molz, Fred (Environmental Engineering & Earth Sciences, Clemson University)
  • 투고 : 2014.03.27
  • 심사 : 2014.06.13
  • 발행 : 2014.06.30

초록

A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

키워드

참고문헌

  1. Gowdy W, Iwinski SR, Woodstock G. Removal efficiencies of polymer enhanced dewatering systems. Proceedings of the 9th Biennial Conference on Stormwater Research & Watershed Management; 2007 May 2-3; Orlando, FL.
  2. Harper HH. Current research and trends in alum treatment of stormwater runoff. Proceedings of the 9th Biennial Conference on Stormwater Research & Watershed Management; 2007 May 2-3; Orlando, FL.
  3. Kang JH, Li Y, Lau SL, Kayhanian M, Stenstrom MK. Particle destabilization in highway runoff to optimize pollutant removal. J. Environ. Eng. 2007;133:426-434. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(426)
  4. Akan AO, Houghtalen RJ. Urban hydrology, hydraulics, and stormwater quality. Hoboken: John Wiley & Sons; 2003.
  5. Smoluchowski MV. Versuch einer mathematischen theorie der koagulationskinetik kolloider Losungen. Z. Phys. Chem. 1917;92:129-168.
  6. Lawler DF, Wilkes DR. Flocculation model testing; particle sizes in a softening plant. J. Am. Water Works Assoc. 1984;76:90-97.
  7. Hounslow MJ, Ryall RL, Marshall VR. A discretized population balance for nucleation, growth, and aggregation. AIChE J. 1988;34:1821-1832. https://doi.org/10.1002/aic.690341108
  8. Spicer PT, Pratsinis SE. Shear-induced flocculation: the evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996;30:1049-1056. https://doi.org/10.1016/0043-1354(95)00253-7
  9. Spicer PT, Pratsinis SE. Coagulation and fragmentation: universal steady-state particle-size distribution. AIChE J. 1996;42:1612-1620. https://doi.org/10.1002/aic.690420612
  10. McGraw R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 1997;27:255-265. https://doi.org/10.1080/02786829708965471
  11. Somasundaran P, Runkana V. Modeling flocculation of colloidal mineral suspensions using population balances. Int. J. Miner. Process. 2003;72:33-55. https://doi.org/10.1016/S0301-7516(03)00086-3
  12. Marchisio DL, Vigil RD, Fox RO. Quadrature method of moments for aggregation-breakage processes. J. Colloid Interface Sci. 2003;258:322-334. https://doi.org/10.1016/S0021-9797(02)00054-1
  13. Rahmani NH, Dabros T, Masliyah JH. Evolution of asphaltene floc size distribution in organic solvents under shear. Chem. Eng. Sci. 2004;59:685-697. https://doi.org/10.1016/j.ces.2003.10.017
  14. Prat OP, Ducoste JJ. Modeling spatial distribution of floc size in turbulent processes using the quadrature method of moment and computational fluid dynamics. Chem. Eng. Sci. 2006;61:75-86. https://doi.org/10.1016/j.ces.2004.11.070
  15. Runkana V, Somasundaran P, Kapur PC. A population balance model for flocculation of colloidal suspensions by polymer bridging. Chem. Eng. Sci. 2006;61:182-191. https://doi.org/10.1016/j.ces.2005.01.046
  16. Lee DG, Bonner JS, Garton LS, Ernest AN, Autenrieth RL. Modeling coagulation kinetics incorporating fractal theories: a fractal rectilinear approach. Water Res. 2000;34:1987-2000. https://doi.org/10.1016/S0043-1354(99)00354-1
  17. Fox RO. Computational models for turbulent reacting flows. Cambridge: Cambridge University Press; 2003.
  18. Marchisio DL, Vigil RD, Fox RO. Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chem. Eng. Sci. 2003;58:3337-3351. https://doi.org/10.1016/S0009-2509(03)00211-2
  19. Kumar S, Ramkrishna D. On the solution of population balance equations by discretization: I. A fixed pivot technique. Chem. Eng. Sci. 1996;51:1311-1332. https://doi.org/10.1016/0009-2509(96)88489-2
  20. Ramkrishna D, Mahoney AW. Population balance modeling: promise for the future. Chem. Eng. Sci. 2002;57:595-606. https://doi.org/10.1016/S0009-2509(01)00386-4
  21. White FM. Viscous fluid flow. 2nd ed. New York: McGraw-Hill; 1991.
  22. Heath AR, Koh PT. Combined population balance and CFD modelling of particle aggregation by polymeric flocculant. Proceedings of the 3rd International Conference on CFD in the Minerals and Process Industries; 2003 Dec 10-12; Melbourne, Australia.
  23. Lian G, Moore S, Heeney L. Population balance and computational fluid dynamics modelling of ice crystallisation in a scraped surface freezer. Chem. Eng. Sci. 2006;61:7819-7826. https://doi.org/10.1016/j.ces.2006.08.075
  24. Schwarzer HC, Schwertfirm F, Manhart M, Schmid HJ, Peukert W. Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem. Eng. Sci. 2006;61:167-181. https://doi.org/10.1016/j.ces.2004.11.064
  25. Stokes GG. Mathematical and physical papers (Vol. 1). Cambridge: Cambridge University Press; 1880.
  26. Brown PP, Lawler DF. Sphere drag and settling velocity revisited. J. Environ. Eng. 2003;129:222-231. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(222)
  27. Jiang Q, Logan BE. Fractal dimensions of aggregates determined from steady-state size distributions. Environ. Sci. Technol. 1991;25:2031-2038. https://doi.org/10.1021/es00024a007
  28. Johnson CP, Li X, Logan BE. Settling velocities of fractal aggregates. Environ. Sci. Technol. 1996;30:1911-1918. https://doi.org/10.1021/es950604g
  29. Spicer PT, Pratsinis SE, Raper J, Amal R, Bushell G, Meesters G. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technol. 1998;97:26-34. https://doi.org/10.1016/S0032-5910(97)03389-5
  30. Flesch JC, Spicer PT, Pratsinis SE. Laminar and turbulent shear-induced flocculation of fractal aggregates. AIChE J. 1999;45:1114-1124. https://doi.org/10.1002/aic.690450518
  31. Chakraborti RK, Atkinson JF, Van Benschoten JE. Characterization of alum floc by image analysis. Environ. Sci. Technol. 2000;34:3969-3976. https://doi.org/10.1021/es990818o
  32. Chakraborti RK, Gardner KH, Atkinson JF, Van Benschoten JE. Changes in fractal dimension during aggregation. Water Res. 2003;37:873-883. https://doi.org/10.1016/S0043-1354(02)00379-2
  33. Adachi Y. Dynamic aspects of coagulation and flocculation. Adv. Colloid Interface Sci. 1995;56:1-31. https://doi.org/10.1016/0001-8686(94)00229-6
  34. Miyahara K, Adachi Y, Nakaishi K, Ohtsubo M. Settling velocity of a sodium montmorillonite floc under high ionic strength. Colloids Surf. A Physicochem. Eng. Asp. 2002;196:87-91. https://doi.org/10.1016/S0927-7757(01)00798-1
  35. Sterling MC Jr, Bonner JS, Ernest AN, Page CA, Autenrieth RL. Application of fractal flocculation and vertical transport model to aquatic sol-sediment systems. Water Res. 2005;39:1818-1830. https://doi.org/10.1016/j.watres.2005.02.007
  36. Ding A, Hounslow MJ, Biggs CA. Population balance modelling of activated sludge flocculation: investigating the size dependence of aggregation, breakage and collision efficiency. Chem. Eng. Sci. 2006;61:63-74. https://doi.org/10.1016/j.ces.2005.02.074
  37. Parker DS, Kaufman WJ, Jenkins D. Floc breakup in turbulent flocculation processes. J. Sanit. Eng. Div. 1972;98:79-99.
  38. Langseth JO, Tveito A, Winther R. On the convergence of operator splitting applied to conservation laws with source terms. SIAM J. Numer. Anal. 1996;33:843-863. https://doi.org/10.1137/0733042
  39. Aro CJ, Rodrigue GH, Rotman DA. A high performance chemical kinetics algorithm for 3-D atmospheric models. Int. J. High Perform. Comput. Appl. 1999;13:3-15. https://doi.org/10.1177/109434209901300101
  40. Badrot-Nico F, Brissaud F, Guinot V. A finite volume upwind scheme for the solution of the linear advection-diffusion equation with sharp gradients in multiple dimensions. Adv. Water Resour. 2007;30:2002-2025. https://doi.org/10.1016/j.advwatres.2007.04.003
  41. Durran DR. Numerical methods for wave equations in geophysical fluid dynamics. New York: Springer; 1999.
  42. Rogers SE, Kwak D. An upwind differencing scheme for the incompressible Navier-Strokes equations. Washington, DC: National Aeronautics and Space Administration; 1988.
  43. Alhumaizi K. Comparison of finite difference methods for the numerical simulation of reacting flow. Comput. Chem. Eng. 2004;28:1759-1769. https://doi.org/10.1016/j.compchemeng.2004.02.032
  44. Timin T, Esmail MN. A comparative study of central and upwind difference schemes using the primitive variables. Int. J. Numer. Methods Fluids 1983;3:295-305. https://doi.org/10.1002/fld.1650030308
  45. LeVeque RJ. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 1996;33:627-665. https://doi.org/10.1137/0733033
  46. Bushell GC, Yan YD, Woodfield D, Raper J, Amal R. On techniques for the measurement of the mass fractal dimension of aggregates. Adv. Colloid Interface Sci. 2002;95:1-50. https://doi.org/10.1016/S0001-8686(00)00078-6
  47. Turchiuli C, Fargues C. Influence of structural properties of alum and ferric flocs on sludge dewaterability. Chem. Eng. J. 2004;103:123-131. https://doi.org/10.1016/j.cej.2004.05.013
  48. Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd ed. New York: John Wiley & Sons Inc. 1999.
  49. Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Reading: Perseus Books Publishing. 1994.
  50. Bungartz H, Wanner SC. Significance of particle interaction to the modelling of cohesive sediment transport in rivers. Hydrol. Process. 2004;18:1685-1702. https://doi.org/10.1002/hyp.1412
  51. Winterwerp JC. On the flocculation and settling velocity of estuarine mud. Cont.Shelf Res. 2002;22:1339-1360. https://doi.org/10.1016/S0278-4343(02)00010-9
  52. Maggi F, Mietta F, Winterwerp JC. Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. J. Hydrol. 2007;343:43-55. https://doi.org/10.1016/j.jhydrol.2007.05.035

피인용 문헌

  1. Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review vol.21, pp.1, 2016, https://doi.org/10.4491/eer.2015.086
  2. Significance of Early and Late Stages of Coupled Aggregation and Sedimentation in the Fate of Nanoparticles: Measurement and Modeling vol.52, pp.15, 2014, https://doi.org/10.1021/acs.est.7b05236
  3. Enhancing Gravity Thickener Feedwell Design and Operation for Optimal Flocculation through the Application of Computational Fluid Dynamics vol.42, pp.7, 2014, https://doi.org/10.1080/08827508.2019.1678156