DOI QR코드

DOI QR Code

Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC

활성탄의 후 처리에 의한 EDLC 전극재의 전기화학 성능 개선

  • Lee, Eunji (Department of Chemical engineering, Myongji University) ;
  • Kwon, Soon Hyung (Department of Chemical engineering, Myongji University) ;
  • Choi, Pooreum (Department of Chemical engineering, Myongji University) ;
  • Jung, Ji Chul (Department of Chemical engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical engineering, Myongji University)
  • Received : 2014.04.04
  • Accepted : 2014.05.14
  • Published : 2014.06.27

Abstract

Commercial activated-carbon used as the electrode material of an electric double-layer capacitor (EDLC) was posttreated with various acids and alkalis to increase its capacitance. The carbon samples prepared were then heat-treated in order to control the amount of acidic functional groups formed by the acid treatments. Coin-type EDLC cells with two symmetric carbon electrodes were assembled using the prepared carbon materials and an organic electrolyte. The electrochemical performance of the EDLC was measured by galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the various activated carbons, the carbon electrodes (CSsb800) prepared by the treatments of coconutshell-based carbon activated with NaOH and $H_3BO_5$, and then heat treated at $800^{\circ}C$ under a flow of nitrogen gas, showed relatively good electrochemical performance. Although the specific-surface-area of the carbon-electrode material ($1,096m^2/g$) was less than that of pristine activated-carbon ($1,122m^2/g$), the meso-pore volume increased after the combined chemical and heat treatments. The specific capacitance of the EDLC increased from 59.6 to 74.8 F/g (26%) after those post treatments. The equivalent series resistance of EDLC using CSsb800 as electrode was much lower than that of EDLC using pristine activated carbon. Therefore, CSsb800 exhibited superior electrochemical performance at high scan rates due to its low internal resistance.

Keywords

References

  1. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157(1), 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  2. S. G. Park, J. Inst. Const. Technol., 31, 57 (2012).
  3. H. C. Kim, J. J. Yang, H. J Kim, D. W. Shin and S. K. Park, J. Korean Electrochem. Soc., 14(1), 38 (2011). https://doi.org/10.5229/JKES.2011.14.1.038
  4. S. G. Kim, G. J. Hwang, J. C. Kim and C. H. Ryu, J. Korean Electrochem. Soc., 14(4), 201 (2011). https://doi.org/10.5229/JKES.2011.14.4.201
  5. A. Elmouwahidi, Z. Zapata-Benabithe, F. Cattasco-Marin and C. Moreno-Castilla, Bioresour. Technol., 111, 185 (2012). https://doi.org/10.1016/j.biortech.2012.02.010
  6. K. Torchala, K. Kierzek and J. Machnikowski, Electrochim. Acta, 86(30), 260 (2012). https://doi.org/10.1016/j.electacta.2012.07.062
  7. S. Mitani, S. I. Lee, K. Saito, S. H. Yoon, Y. Korai and I. Mochida, Carbon, 43(14), 2960 (2005). https://doi.org/10.1016/j.carbon.2005.05.047
  8. W. M. Qiao, Y. Korai, I. Mochida, Y. Hori and T. Meada, Carbon, 40(3), 351 (2002). https://doi.org/10.1016/S0008-6223(01)00110-5
  9. E. Jeong, M. J. Jung, S. H. Cho, S. I. Lee and Y. S. Lee, Colloids Surf., A, 377(1-3), 243 (2011). https://doi.org/10.1016/j.colsurfa.2010.12.035
  10. J. G. Wu, I. P. Hong, S. M. Park, S. Y. Lee and M. S. Kim, Carbon Lett., 9(2), 137 (2008). https://doi.org/10.5714/CL.2008.9.2.137
  11. J. W. Lim, E. G. Jeong, M. J. Jung, S. I. Lee and Y. S. Lee, Appl. Chem. Eng., 22(4), 405 (2011).
  12. M. J. Jung, H. R. Yu, D. Lee and Y. S. Lee, Appl. Chem. Eng., 24(2), 201 (2013).
  13. J. Y. Wu, I. P. Hong and M. S. Kim, J. Korea Oil Chem. Soc., 30(2), 362 (2013). https://doi.org/10.12925/jkocs.2013.30.2.362
  14. S. H. Kwon, E. J. Lee, B. S. Kim, S. G. Kim, B. J. Lee, M. S. Kim and J. C. Jung, Curr. Appl. Phys., 14(4), 603 (2014). https://doi.org/10.1016/j.cap.2014.02.010
  15. M. Endo, Y. J. KIM, H. Ohta, K. Ishi, T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda and M. S. Dresselhaus, Carbon, 40(14), 2613 (2002). https://doi.org/10.1016/S0008-6223(02)00191-4
  16. S. T. Mayer, R.W. Pekala and J.L. Kaschmitter, J. Electrochem. Soc., 140(2), 446 (1993). https://doi.org/10.1149/1.2221066
  17. K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, Adv. Mater., 13(7), 497 (2001). https://doi.org/10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
  18. J. Y. Wu, M. Eng. Thesis (in Korean), p.28, Myongji University, Yongin (2007).
  19. Y. J. Lee, H. W. Park, G. P. Kim, J. Yi and I. K. Song, Curr. Appl. Phys., 13(5), 945 (2013). https://doi.org/10.1016/j.cap.2013.02.005
  20. W. S. Choi, W. G. Shim, D. W. Ryu, M. J. Hwang and H. Moon, Microporous Mesoporous Mater., 155(1), 274 (2012). https://doi.org/10.1016/j.micromeso.2012.01.006

Cited by

  1. Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors vol.20, pp.2, 2016, https://doi.org/10.1007/s10008-015-3061-y
  2. activation for optimizing meso-/microporous structure of hollow carbon shells for supercapacitors vol.11, pp.03, 2018, https://doi.org/10.1142/S1793604718500492