DOI QR코드

DOI QR Code

Context-Aware Fusion with Support Vector Machine

Support Vector Machine을 이용한 문맥 인지형 융합

  • 허경용 (동의대학교 전자공학과) ;
  • 김성훈 (경북대학교 컴퓨터정보학부)
  • Received : 2014.05.12
  • Accepted : 2014.05.27
  • Published : 2014.06.30

Abstract

An ensemble classifier system is a widely-used multi-classifier system, which combines the results from each classifier and, as a result, achieves better classification result than any single classifier used. Several methods have been used to build an ensemble classifier including boosting, which is a cascade method where misclassified examples in previous stage are used to boost the performance in current stage. Boosting is, however, a serial method which does not form a complete feedback loop. In this paper, proposed is context sensitive SVM ensemble (CASE) which adopts SVM, one of the best classifiers in term of classification rate, as a basic classifier and clustering method to divide feature space into contexts. As CASE divides feature space and trains SVMs simultaneously, the result from one component can be applied to the other and CASE achieves better result than boosting. Experimental results prove the usefulness of the proposed method.

앙상블 분류기는 여러 개의 분류기에서의 예측 결과를 결합함으로써 단일 분류기에 비해 신뢰성 높은 예측 결과를 얻을 수 있는 방법으로 널리 사용되고 있다. 앙상블 분류기를 위해서는 여러 가지 방법이 사용되고 있으며 흔히 사용되는 방법으로는 부스팅이 있다. 하지만 부스팅은 단계적인 학습을 통해 이전 단계에서 잘못 분류된 샘플들을 다음 단계에서 다시 분류하는 방식으로 이전 단계로의 피드백이 불완전한 순차적인 방법이라는 한계가 있다. 이 논문에서는 단일 분류기 중 가장 성능이 좋은 것으로 알려진 SVM을 기본분류기로 사용하여 동시에 여러개의 SVM을 학습하는 문맥 감지형 SVM 앙상블알고리즘을 제안한다. 제안하는 방법에서는 특징 공간을 문맥으로 나누는 클러스터링과 SVM 학습을 동시에 진행하므로 특징 공간 분할과 학습이 서로의 결과를 사용할 수 있어 기존 앙상블학습에 비해 더 나은 결과를 얻을 수 있으며 이는 실험 결과를 통해 확인할 수 있다.

Keywords

References

  1. D.T. G. Dietterich, "Ensemble Methods in machine learning," Proceedings of the First International Workshop on Multiple Classifier Systems, pp. 1-15, 2000.
  2. L. Rokach, "Ensemble-based classifiers," Artificial Intelligence Review, Vol. 33, No. 1-2, pp. 1-39, Feb. 2010. https://doi.org/10.1007/s10462-009-9124-7
  3. L. Breiman, "Bagging predictors," Machine Learning, Vol. 24, No. 2, pp. 123-140, Aug. 1996.
  4. Boosting.org, http://www.boosting.org
  5. Robert E.Schapire "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and SystemSciences, Vol. 55, No. 1, pp. 119-139, Aug. 1997.
  6. Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim and Sung Yang Bang, "Constructing support vector machine ensemble," Pattern Recognition, Vol. 36, No. 12, pp. 2757-2767, Dec. 2003. https://doi.org/10.1016/S0031-3203(03)00175-4
  7. Zhi-Yong Lin, Zhi-Feng Hao, Xiao-Wei Yang and XiaoLan Liu, "Several SVM Ensemble Methods Integrated with Under-Sampling for Imbalanced Data Learning," Advanced Data Mining and Applications, Lecture Notes in Computer Science, Vol. 5678, pp. 536-544, 2009.
  8. E. Ahmed, N, El-Gayar and I. A. El-Azab, "Support Vector Machine ensembles using features distribution among subsets for enhancing microarray data classification," Proceedings of the 10th International Conference on Intelligent Systems Design and Applications, pp. 1242-1246, 2010.
  9. J. C. Bezdek, "Pattern Recognition with Fuzzy Objective Function Algorithms," Plenum Press, New York, 1981.
  10. V. Vapnik, "Statistical Learning Theory," John Wiley & Sons, New York, 1998.
  11. K. Wu and K. H. Yap, "Fuzzy SVM for content-based image retrieval," IEEE Computational Intelligence Magazine, Vol. 1, No. 2, pp. 10-16, May 2006.
  12. B. Lim, M. Tsui, V. Charastrakul and D. Shi, "Web search with text categorization using probabilistic framework of SVM," Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 2950-2955, 2006.
  13. C. F. Lin and S. D. Wang, "Fuzzy support vector machines," IEEE Transactions on Neural Networks, Vol. 13, No. 2, pp. 464-471, March 2002. https://doi.org/10.1109/72.991432
  14. Y. Wang, S. Wang and K. K. Lai, "A new fuzzy support vector machine to evaluate credit risk," IEEE Transactions on Fuzzy Systems, Vol. 13, No. 6, pp. 820-831, Dec. 2005. https://doi.org/10.1109/TFUZZ.2005.859320
  15. L. Wang, P. Xue and K. L. Chan, "Incorporating prior knowledge into SVM for image retrieval," Proceedings of the 17th International Conference on Pattern Recognition, pp. 981-984, 2004.
  16. Q. Tao, G. W. Wu, F. Y. Wang and J. Wang, "Posterior probability support vector machines for unbalanced data," IEEE Transactions on Neural Networks, Vol. 16, No. 6, pp. 1561-1573, Nov. 2005. https://doi.org/10.1109/TNN.2005.857955
  17. Y. Liu and Y. F. Zheng, "Soft SVM and its application in video-object extraction," IEEE Transactions on Signal Processing, Vol. 55, No. 7, pp. 3272-3282, July 2007. https://doi.org/10.1109/TSP.2007.894403

Cited by

  1. Fine-Grained Mobile Application Clustering Model Using Retrofitted Document Embedding vol.39, pp.4, 2017, https://doi.org/10.4218/etrij.17.0116.0936
  2. 준지도 지지 벡터 회귀 모델을 이용한 반응 모델링 vol.19, pp.9, 2014, https://doi.org/10.9708/jksci.2014.19.9.125