DOI QR코드

DOI QR Code

Electrochemical characterization of LiCoO2 thin film by sol-gel process for annealing temperature and time

졸-겔법에 의해 합성한 리튬 코발트 산화물의 열처리 온도와 시간에 따른 전기 화학적 특성

  • Roh, Tae-Ho (Department of Gem and Precious Metal, Dongshin University) ;
  • Yon, Seog-Joo (Department of Gem and Precious Metal, Dongshin University) ;
  • Ko, Tae-Seog (Department of Gem and Precious Metal, Dongshin University)
  • 노태호 (동신대학교 보석귀금속학과) ;
  • 연석주 (동신대학교 보석귀금속학과) ;
  • 고태석 (동신대학교 보석귀금속학과)
  • Received : 2014.05.13
  • Accepted : 2014.06.13
  • Published : 2014.06.30

Abstract

$LiCoO_2$ thin film have received attention as cathodes of thin-film microbatteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and electrochemical properties were investigated under annealing temperature and time. The phycochemical properties of $LiCoO_2$ thin film were investigated by X-ray diffraction, scaning electron microscopy and atomic force microscopy. The electrochemical properties were characterized using galvanostatic charging/discharging cycling tests. From X-ray diffraction, as-grown films annealed at $550^{\circ}C$ and $750^{\circ}C$ are presumed to be spinel structure and a single phase of the layered-rock-salt, respectively. The RMS roughness and grain size of the films which annealed at $750^{\circ}C$ has similar values for annealing time 10 and 30 min, while for annealing time 120 min surface roughness, grain size increase and pore appearance were observed. The first discharge capacity of $LiCoO_2$ thin films annealed at $750^{\circ}C$ for 10, 30 and 120 min is about 54.5, 56.8 and $51.87{\mu}Ah/cm^2{\mu}m$, respectively. Corresponding capacity retention at 50th cycle is 97.25, 76.69, 77.19%.

$LiCoO_2$는 박막전지의 양극재료로써 많은 관심을 받고 있는 물질이다. 본 연구에서는 졸-겔 스핀코팅공정과 열처리 과정을 거쳐 Au 금속 지지체 위에 $LiCoO_2$ 박막을 합성하였으며, 열처리 온도와 열처리 시간에 따른 $LiCoO_2$ 박막의 전기 화학적 성질을 고찰하였다. 합성된 박막의 물리화학적 성질은 X-선회절분석기(XRD), 전자현미경(SEM)과 원자간력현미경(AFM)에 의해 조사하였으며 전기화학적 특성분석을 위하여 galvanostatic법을 이용하여 충 방전 사이클 특성도 조사하였다. X-선 회절 결과로부터 $550^{\circ}C$$750^{\circ}C$ 지지체 위에 성장된 박막은 각각 스피넬구조와 층상 암염구조를 갖는다. $750^{\circ}C$에서 10분과 30분 열처리한 시료의 RMS 조도와 입자의 크기는 큰 차이를 보이지 않았으나, 120분 열처리한 시료는 RMS 조도의 증가, 입자크기의 증가 그리고 세공이 관찰되었다. $750^{\circ}C$에서 10분, 30분, 120분 열처리한 $LiCoO_2$ 박막의 방전용량은 각각 54.5, 56.8, $51.8{\mu}Ah/cm^2{\mu}m$이고 50회의 충 방전 후의 방전용량 복원률은 97.25, 76.69, 77.19 %이다.

Keywords

References

  1. H.F. Gibbard, "High temperature, high pulse power lithium batteries", J. Power Sources 26 (1989) 81. https://doi.org/10.1016/0378-7753(89)80017-5
  2. E. Antolini, "$LiCoO_2$: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties", Solid State Ionics 170 (2004) 159. https://doi.org/10.1016/j.ssi.2004.04.003
  3. O.A. Brylev, O.A. Shlyakhtin, T.L. Kulova, A.M. Skundin and Y.D. Tretyakov, "Influence of chemical prehistory on the phase formation and electro-chemical performance of $LiCoO_2$ materials", Solid State Ionics 156 (2003) 291. https://doi.org/10.1016/S0167-2738(02)00686-0
  4. W.S. Yoon and K.B. Kim, "Synthesis of $LiCoO_2$ using acrylic acid and its electrochemical properties for Li secondary batteries", J. Power Sources 81 (1999) 517.
  5. S.M Lala, L.A. Montoro, E.D Donato and J.M. Rosolen, "Synthesis of $LiCoO_2$ by metallo-organic decomposition-MOD", J. Power Sources 114 (2003) 127. https://doi.org/10.1016/S0378-7753(02)00590-6
  6. W.S. Kim, "Characteristics of $LiCoO_2$ thin film cathodes according to the annealing ambient for the post-annealing process", J. Power Sources 134 (2004) 103. https://doi.org/10.1016/j.jpowsour.2004.02.035
  7. S. Hirano and K. Kato, "Formation of $LiNbO_3$ films by hydrolysis of metal alkoxides", J. Non-Crystal. Solids 100 (1988) 538. https://doi.org/10.1016/0022-3093(88)90079-8
  8. B.Y. Kim, B.K. Shin, H.S. Lee and H.H. Chun, "Physico-chemical effects of cerium oxide on catalytic activity of $CeO_2-TiO_2$ prepared by sol-gel method for $NH_3$-SCR", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 320. https://doi.org/10.6111/JKCGCT.2013.23.6.320
  9. T.H. Roh, S.J. Yon and T.S. Ko, "Synthesis and characterization of $LiCoO_2$ thin film by sol-gel process", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) inpress. https://doi.org/10.6111/JKCGCT.2014.24.3.094
  10. Y.J. Park, J.G. Kim, M.K. Kim, H.T. Chung, W.S. Um, M.H. Kim and H.G. Kim, "Fabrication of $LiMn_2O_4$ thin films by sol-gel method for cathode materials of microbattery", J. Power Sources 76 (1998) 41. https://doi.org/10.1016/S0378-7753(98)00133-5
  11. K.H. Hwang, S.H. Lee and S.K. Joo, "Fabrication and characterization of an $LiMn_2O_4$ thin-film cathode for rechargeable lithium microbatteries", J. Power Sources 54 (1995) 224. https://doi.org/10.1016/0378-7753(94)02072-B
  12. L. Croquennec, P. Denlard, R. Biensan and M. Braoussely, "Electrochemical behavior of orthorhombic $LiMnO_2$: influence of the grain size and cationic disorder", Solid State Ionics 89 (1996) 127. https://doi.org/10.1016/0167-2738(95)00245-6
  13. B. Wang, J.B. Bates, F.X. Harts, B.C. Sales, R.A. Zuhr and J.D. Robertson, "Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes", J. Electrochem. Soc. 143 (1996) 3203. https://doi.org/10.1149/1.1837188
  14. I.A. Courtney and J.R. Dahn, "Key factors controlling the reversibility of the reaction of lithium with $SnO_2$ and $Sn_2BPO_6$ glass", J. Eletrochem. Soc. 144 (1997) 2943. https://doi.org/10.1149/1.1837941
  15. D.A. Porter and K.E. Eastering, "Phase transformation in metal and alloy", 2nd ed. (Chapman & Hall, London, 1992) 98.