DOI QR코드

DOI QR Code

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells

N-type 결정질 실리콘 태양전지 응용을 위한 Al2O3 박막의 패시베이션 특성 연구

  • Jeong, Myung-Il (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University) ;
  • Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University)
  • 정명일 (전북대학교 반도체화학공학부) ;
  • 최철종 (전북대학교 반도체화학공학부)
  • Received : 2014.06.03
  • Accepted : 2014.06.13
  • Published : 2014.06.30

Abstract

The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.

Atomic layer deposition(ALD)을 이용하여 $Al_2O_3$ 박막을 형성하고 이에 대한 패시베이션 특성에 대한 연구를 수행하였다. ALD로 증착된 $Al_2O_3$ 박막은 $400^{\circ}C$ 5분간 후속 열처리 공정 후에도 $Al_2O_3$ - 실리콘 계면 반응 없이 비정질 상태를 유지할 만큼 구조적으로 안정한 특성을 나타내었다. 후속 열처리 후 $Al_2O_3$ 박막의 패시베이션 특성이 향상되었으며, 이는 field effective 패시베이션과 화학적 패시베이션 효과가 동시에 상승에 기인하는 것으로 판단된다. $Al_2O_3$ 박막의 음고정 전하를 정량적으로 평가하기 위해서 후속 열처리 공정을 거친 $Al_2O_3$ 박막을 이용하여 metal-oxide-semiconductor(MOS) 소자를 제작하고 capacitance-voltage(C-V) 분석을 수행하였다. C-V 결과로부터 추출된 flatband voltage($V_{FB}$)와 equivalent oxide thickness(EOT)의 관계식을 통하여 $Al_2O_3$ 박막의 고정음전하는 $2.5{\times}10^{12}cm^{-2}$로 계산되었으며, 이는 본 연구에서 제시된 $Al_2O_3$ 박막 공정이 N-type 실리콘 태양전지의 패시베이션 공정에 응용 가능하다는 것을 의미한다.

Keywords

References

  1. H.C. Jung, Y.K. Paek, H.H. Kim, J.H. Eum, K. Choi, H.-T. Kim and H.S. Chang, "Formation of lotus surface structure for high efficiency silicon solar cell", J. Korean Cryst. Growth Cryst. Technol. 20[1] (2010) 7. https://doi.org/10.6111/JKCGCT.2010.20.1.007
  2. K.-H. Lee, "A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application", J. Korean Cryst. Growth Cryst. Technol. 21[6] (2011) 225. https://doi.org/10.6111/JKCGCT.2011.21.6.225
  3. A.W. Blakers and M.A. Green, "20% efficiency silicon solar cells", Appl. Phys. Lett. 48 (1986) 215. https://doi.org/10.1063/1.96799
  4. A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin and P.R. Mei, "New processes for the production of solar-grade polycrystalline silicon: A review", Sol. Energy Mater. Sol. Cells 92 (2008) 418. https://doi.org/10.1016/j.solmat.2007.10.003
  5. K.T. Li, X.Q. Wang, P.F. Lu, J.N. Ding and N.Y. Yuan, "Influence of the microstructure of n-type Si : H and passivation by ultrathin $Al_2O_3$ on the efficiency of Si radial junction nanowire array solar cells", Sol. Energy Mater. Sol. Cells 128 (2014) 11. https://doi.org/10.1016/j.solmat.2014.04.034
  6. H.-P. Wang, T.-Y. Lin, M.-L. Tsai, W.-C. Tu, M.-Y. Huang, C.-W. Liu, Y.-L. Chueh and J.-H. He, "Toward Efficient and Omnidirectional n-Type Si Solar Cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures", ACS Nano 8[3] (2014) 2959. https://doi.org/10.1021/nn500257g
  7. M.A Green, J. Zhao, A. Wang and S.R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells", Sol. Energy Mater. Sol. Cells 65 (2001) 9. https://doi.org/10.1016/S0927-0248(00)00072-6
  8. M.-I. Jeong and C.-J. Choi, "Passivation properties of $SiN_x$ and $SiO_2$ thin films for the application of crystalline Si solar cells", J. Korean Cryst. Growth Cryst. Technol. 24[1] (2014) 1. https://doi.org/10.6111/JKCGCT.2014.24.1.041
  9. Armin G Aberle, "Surface passivation of crystalline silicon solar cells: a review", Prog. Photovoltaics 8[5] (2000) 473. https://doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D
  10. G. Dingemans and W.M.M. Kessels, "Status and prospects of $Al_2O_3$-based surface passivation schemes for silicon solar cells", J. Vac. Sci. Technol. A 30 (2012) 040802. https://doi.org/10.1116/1.4728205
  11. Steven M. George, "Atomic Layer Deposition: An Overview", Chem. Rev. 110 (2010) 111. https://doi.org/10.1021/cr900056b
  12. M.D. Groner, F.H. Fabreguette, J.W. Elam and S.M. George, "Low-temperature $Al_2O_3$ atomic layer deposition", Chem. Mater. 16 (2004) 639. https://doi.org/10.1021/cm0304546
  13. B. Hoex, M.C.M. van de Sanden, J. Schmidt, R. Brendel and W.M.M. Kessels, "Surface passivation of phosphorus-diffused n+-type emitters by plasma-assisted atomic-layer deposited $Al_2O_3$", Phys. Status Solidi RRL 6[1] (2012) 4. https://doi.org/10.1002/pssr.201105445
  14. B. Vermang, A. Rothschild, A. Racz, J. John, J. Poortmans, R. Mertens, P. Poodt, V. Tiba and F. Roozeboom, "Spatially separated atomic layer deposition of $Al_2O_3$, a new option for high-throughput Si solar cell passivation", Prog. Photovoltaics 19[6] (2011) 733. https://doi.org/10.1002/pip.1092
  15. P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch and R. Preu, "Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide", Appl. Phys. Lett. 95 (2009) 151502. https://doi.org/10.1063/1.3250157
  16. G. Dingemans, A. Clark, J.A. van Delft, M.C.M. van de Sanden and W.M.M. Kessels, "$Er^{3+}$ and Si luminescence of atomic layer deposited Er-doped $Al_2O_3$ thin films on Si(100)", J. Appl. Phys. 109 (2011) 113107. https://doi.org/10.1063/1.3595691
  17. C.-J. Choi, M.-G. Jang, Y.-Y. Kim, M.-S. Jeon, B.-C. Park, S.-J. Lee, R.-J. Jung, H.-D. Yang, M. Chang and H.-S. Hwang, "Effects of high-pressure hydrogen post-annealing on the electrical and structural properties of the Pt-Er alloy metal gate on $HfO_2$ film", Electrochem. Solid State Lett. 9 (2006) G228. https://doi.org/10.1149/1.2197968
  18. M. Tapajna, K. Husekova, J.P. Espinos, L. Harmatha and K. Frohlich, "Precise determination of metal effective metal work function and fixed charge in MOS capacitors with high-k dielectric", Mater. Sci. Semicond. Process. 9 (2006) 969. https://doi.org/10.1016/j.mssp.2006.10.012
  19. D. Lei, X. Yu, L. Song, X. Gu, G. Li and D. Yang, "Modulation of atomic-layer-deposited $Al_2O_3$ film passivation of silicon surface by rapid thermal processing", Appl. Phys. Lett. 99 (2011) 052103. https://doi.org/10.1063/1.3616145