DOI QR코드

DOI QR Code

Immobilization of Lipases on Amberlite and Their Interesterification Reaction Characteristics

Amberlite에 고정화된 Lipase 제조 및 효소적 Interesterification을 이용한 반응 특성 연구

  • Park, So Ra (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Ki Teak (Department of Food Science and Technology, Chungnam National University)
  • Received : 2013.08.08
  • Accepted : 2014.02.23
  • Published : 2014.06.30

Abstract

Immobilized lipases were prepared by physical adsorption using lipase AK, AY, AH, PS and R on Amberlite$^{(R)}$XAD$^{(R)}$7 HP resin. With the immobilized lipases (10%), structured lipid was synthesized by enzymatic interesterification of canola oil, palmitic ethyl ester, and stearic ethyl ester in order to study the reaction characteristics. Among the lipase, the highest protein content was obtained from lipase AH (11.41%) before immobilization, while the highest levels of bound protein was observed from immobilized lipase AK (63.91%). Immobilized lipase AK had the highest interesterification activity (38.3% of total saturated fatty acid). Lipase AK was also used for a continuous reaction in which the slow flow of reactant resulted in increased reaction rate. Reusability of immobilized AK, AH and PS increased at the second reaction (120-196.5%). However, the activity of immobilized AK, which had the highest bound protein content (63.91%) decreased after the third reaction, while the activity of immobilized AH and PS was maintained until the sixth reaction.

본 연구는 미생물로부터 유래된 5종(AH, AK, AY, PS와 R)의 lipase들을 Amberlite XAD 7에 흡착법으로 고정화 시킨 후 각 immobilized lipase들의 특성을 알아보았다. 고정화 전과 후의 단백질 함량 및 각 free lipase들과 immobilized lipase들을 이용한 interesterification 반응물의 지방산과 TAG 조성을 분석하였다. 또한, immobilized lipase에 있어 중요한 요인인 reusability를 확인하였다. Free lipase의 단백질 함량은 2.22-11.41%로 AH가 가장 높았던 반면, immobilized lipase에서는 AH, PS와 AK가 mg protein/g support이 높았다. 한편, 반응 특성을 알아보기 위해 카놀라유, PEE와 StEE를 기질로 하여 batch type interesterification을 진행하였을 때, free lipase의 경우 free lipase R을 제외한 다른 free lipase들은 반응시간이 1시간에서 72시간으로 증가함에 따라 총 포화지방산 함량이 증가하였으며 그 중 free lipase AH가 반응성이 가장 높았다. 또한, RP-HPLC를 통해 free lipase AK 반응물을 분석한 결과, 반응시간이 길어질수록 카놀라유(0시간)에서 볼 수 있었던 57.49 area%의 ${\bigcirc}{\bigcirc}{\bigcirc}$가 6.53 area%로 감소하였다. 이는 각 free lipase들이 PEE와 StEE를 효소적 반응에 이용했기 때문이라고 판단된다. 한편, immobilized lipase AY와 R의 경우 반응시간이 1시간에서 48시간으로 증가하여도 카놀라유(0시간)의 총 포화지방산 함량과 큰 차이가 없었으나 immobilized AK의 경우 48시간에서 38.3 area%의 포화지방산 함량으로 가장 높은 활성을 보였다. 또한, 이를 사용하여 continuous type으로 반응하였을 때 유속이 느릴수록 효소와 기질 사이의 접촉 시간이 길어져 반응물의 총 포화지방산 함량이 증가함을 알 수 있었다. Reusability는 immobilized AK, AH와 PS 모두에서 두 번째 반복 반응을 하였을 때, 첫 번째 반응보다 총 포화지방산이 120-196.5% 증가하였다. 그러나 bounding protein 함량이 가장 높았던 immobilized AK는 support에 흡착되었던 free lipase AK의 탈착이 일어나 2번째 반응 후부터 활성이 감소한 반면, immobilized AH와 PS는 활성이 비교적 유지되었다.

Keywords

References

  1. Kim JK, Park JK, Kim HK. Synthesis and characterization of nanoporous silica support for enzyme immobilization. Colloid. Surface. A 241: 113-117 (2004) https://doi.org/10.1016/j.colsurfa.2004.04.048
  2. Zhang L, Hellgren LI, Xu X. Immobilization of phospholipase C for the production of ceramide from sphingomyelin hydrolysis. J. Am. Oil Chem. Soc. 84: 237-247 (2007) https://doi.org/10.1007/s11746-006-1028-y
  3. Malcata FX, Reyes HR, Garcia HS, Hill Jr. CG, Amundson CH. Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme Microb. Tech. 14: 426-446 (1992) https://doi.org/10.1016/0141-0229(92)90135-B
  4. Ye P, Jiang J, Xu ZK. Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly (acrylonitrile-comaleic acid) membrane surface. Colloid. Surface. B. 60: 62-67 (2007) https://doi.org/10.1016/j.colsurfb.2007.05.022
  5. Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater. 17: 953-961 (2005) https://doi.org/10.1021/cm0483137
  6. Bai YX, Li YF, Yang Y, Yi LX. Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. J. Biotechnol. 125: 574-582 (2006) https://doi.org/10.1016/j.jbiotec.2006.04.003
  7. Yu HW, Chen H, Wang X, Yang YY, Ching CB. Cross-linked enzyme aggregates (CLEAs) with controlled particles: Application to Candida rugosa lipase. J. Mol. Catal. B-Enzym. 43: 124-127 (2006) https://doi.org/10.1016/j.molcatb.2006.07.001
  8. Lee KT, Akoh CC. Structured lipids: synthesis and applications. Food Rev. Int. 14: 17-34 (1998) https://doi.org/10.1080/87559129809541148
  9. Haas MJ, Scott K, Jun W, Janssen G. Enzymatic phosphatidylcholine hydrolysis in organic solvent: an examination of selected commercially available lipases. J. Am. Oil Chem. Soc. 71: 483-490 (1991)
  10. Yesiloglu Y. Immobilized lipase-catalyzed ethanolysis of sunflower oil. J. Am. Oil Chem. Soc. 81: 157-160 (2004) https://doi.org/10.1007/s11746-004-0874-y
  11. Rosu R, Uozaki Y, Iwasaki Y, Yamane T. Repeated use of immobilized lipase for monoacylglycerol production by solid-phase glycerolysis of olive oil. J. Am. Oil. Chem. Soc. 74: 445-450 (1997) https://doi.org/10.1007/s11746-997-0104-2
  12. Magnin D, Dumitriu S, Magny P, Chornet E. Lipase immobilization into porous chitoxan beads: activities in aqueous and organic media and lipase localization. Biotechnol. Progr. 17: 734-741 (2001) https://doi.org/10.1021/bp0100528
  13. Pereira EB, De Castro HF, De Moraes FF, Zanin GM. Kinetic studies of lipase from Candida rugosa: a comparative study between free and immobilized enzyme onto porous chitosan beads. Appl. Biochem. Biotech. 91: 739-752 (2001)
  14. Lee KT, Foglia TA, Lee JH. Low-calorie fat substitutes: synthesis and analysis. Vol. 16, pp. 1-19. In: Handbook of Industrial Biocatalysis. Hou CT (ed). CRC Press, Boca Raton, FL, USA (2005)
  15. Lee KT, Foglia TA. Synthesis, purification, and characterization of structured lipids produced from chicken fat. J. Am. Oil Chem. Soc. 77: 1027-1034 (2000) https://doi.org/10.1007/s11746-000-0163-9
  16. Cho EJ, Lee JH, Lee KT. Optimization of enzymatic synthesis condition of structured lipids by response surface methodology. Korean J. Food Sci. Technol. 36: 531-536 (2004)
  17. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  18. Moon JH, Lee JH, Shin JA, Hong ST, Lee KT. Optimization of lipase-catalyzed production of structured lipids from canola oil containing similar composition of triacylglycerols to cocoa butter. J. Korean Soc. Food Sci. Nutr. 40: 1430-1437 (2011) https://doi.org/10.3746/jkfn.2011.40.10.1430
  19. Lee KT, Jones KC, Foglia TA. Separation of structured lipids by high performance liquid chromatography. Chromatographia 55: 197-201 (2002) https://doi.org/10.1007/BF02492142
  20. Yang DS, Rhee JS. Continuous hydrolysis of olive oil by immobilized lipase in organic solvent. Biotechnol. Bioeng. 40: 748-752 (1992) https://doi.org/10.1002/bit.260400615
  21. Rousseau D, Marangoni AG. Tailoring the textural attributes of butter fat/canola oil blends via Rhizopus arrhizus lipase-catalyzed interesterification. 2. Modifications of physical properties. J. Agr. Food Chem. 46: 2375-2381 (1998) https://doi.org/10.1021/jf970726n
  22. Kartal F, Janssen MHA, Hollmann F, Sheldon RA, Kilinc A. Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J. Mol. Catal. B-Enzym. 71: 85-89 (2011) https://doi.org/10.1016/j.molcatb.2011.04.002
  23. Bloomer S, Adlercreutz P, Mattiasson B. Triglyceride interesterification by lipases. 1. Cocoa butter equivalents from a fraction of palm oil. J. Am. Oil Chem. Soc. 67: 519-524 (1990) https://doi.org/10.1007/BF02540759
  24. da Silva RC, De Martini Soares FAS, Hazzan M, Capacla IR, Goncalves MIA, Gioielli LA. Continuous enzymatic interesterification of lard and soybean oil blend: Effects of different flow rates on physical properties and acyl migration. J. Mol. Catal. BEnzym. 76: 23-28 (2012) https://doi.org/10.1016/j.molcatb.2011.11.021
  25. Mustranta A, Forssell P, Poutanen K. Applications of immobilized lipases to transesterification and esterification reactions in non-aqueous system. Enzyme Microb. Tech. 15: 133-139 (1993) https://doi.org/10.1016/0141-0229(93)90037-3
  26. Zaborsky OR. Immobilized Enzyme. CRC Press, Boca Raton, FL, USA. pp. 75-123 (1973)

Cited by

  1. Biodiesel production using lipase producing bacteria isolated from button mushroom bed vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.56