DOI QR코드

DOI QR Code

Isolation and Characterization of Temperate Phages in Enterococcus faecium from Sprouts

새싹채소 유래 Enterococcus faecium으로부터 Temperate Phage의 분리와 특성

  • Lee, Young-Duck (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
  • 이영덕 (가천대학교 식품생물공학과) ;
  • 박종현 (가천대학교 식품생물공학과)
  • Received : 2013.12.12
  • Accepted : 2014.01.27
  • Published : 2014.06.30

Abstract

To analyze the characteristics of bacteriophages in Enterococcus faecium, D-19 and F6 phages were induced from five E. faecium isolated from sprouts by the treatment with mitomycin C. The bacteriophages of D-19 and F-6 had long, non-contractile tails and icosahedral heads, and were members of Siphoviridae family. As the host spectrum, D-19 phage lysed five out of 55 strains of E. faecium, whereas F6 phage lysed only three strains. Both D-19 and F6 phages displayed similar and high stabilities against ethanol and pH capable of resisting the exposure to 100% ethanol and pH 4.

새싹채소로부터 분리된 E. faecium의 temperate phage 특성을 mitomycin C를 이용하여 E. faecium으로부터 D-19 phage와 F6 phage를 각각 분리하였다. 분리된 temperate phage는 형태학적 특성을 확인한 결과 모두 Siphoviridae에 속하는 것으로 나타났다. 그리고, 숙주 저해 범위는 55개의 숙주중에서 D-19 phage는 5주, F6 phage는 3주의 E. faecium만을 용균시킬 수 있는 것으로 확인하였다. 다양한 ethanol 농도에서의 안정성은 고농도에서도 매우 안정한 것으로 확인되었으며, pH의 안정성도 pH 4까지 안정한 것으로 나타났다. 본 연구를 통해 아직 연구가 많이 이루어지지 않은 E. faecium의 temperate phage는 host spectrum이 넓지 않은 것으로 나타났고 pH, 온도 등의 환경인자에 상당히 강한 안정성을 가지고 있는 것으로 나타났다.

Keywords

References

  1. Giraffa G. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215-222 (2003) https://doi.org/10.1016/S0168-1605(03)00183-1
  2. Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci new developments in the 21st century. Cell. Mol. Life Sci. 60: 2622-2636 (2003) https://doi.org/10.1007/s00018-003-3138-0
  3. Franz CM, Stiles ME, Schleifer KH, Holzapfel WH. Enterococci in foods-a conundrum for food safety. Int. J. Food Microbiol. 88: 105-122 (2003) https://doi.org/10.1016/S0168-1605(03)00174-0
  4. Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. Clin. Microbiol. Rev. 7: 462-478 (1994)
  5. Gordts B, van Landuyt H, Ieven M, Vandamme P, Goossens H. Vancomycin-resistant Enterococci colonizing the intestinal tracts of hospitalized patients. J. Clin. Microbiol. 33: 2842-2846 (1995)
  6. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 912: 72S-75S (1991)
  7. Moellering RC Jr. Emergence of Enterococcus as a significant pathogen. Clin. Infect. Dis. 14: 1173-1178 (1992) https://doi.org/10.1093/clinids/14.6.1173
  8. Linden PK, Miller CB. Vancomycin-resistant Enterococci: The clinical effect of a common nosocomical pathogen. Diagn. Micr. Infec. Dis. 33: 113-120 (1999) https://doi.org/10.1016/S0732-8893(98)00148-5
  9. Gin AS, Zhanel GG. Vancomycin-resistant Enterococci. Ann. Pharmacother. 30: 615-624 (1996)
  10. Sternm CS, Carvalho MG, Teixeira LM. Chracterization of Enterococci isolated from human and nonhuman sources in Brazil. Diagn. Micr. Infec. Dis. 20: 61-67 (1994) https://doi.org/10.1016/0732-8893(94)90093-0
  11. Iwen PC, Kelly DM, Linder J, Hinrichs SH, Dominguez EA, Rupp ME, Patil KD. Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrob. Agents Ch. 41: 494-495 (1997)
  12. Mundt JO. Occurrence of Enterococci on plants in a wild environment. Appl. Microbiol. 11: 141-144 (1963)
  13. Franz CMAP, Holzapfel WH, Stiles ME. Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47: 1-24 (1990)
  14. Giraffa G. Enterococci from foods. FEMS Microbiol. Rev. 26: 163-171 (2002) https://doi.org/10.1111/j.1574-6976.2002.tb00608.x
  15. Leclercq R, Dutka-Malen S, Brisson-Noel A, Molinas C, Derlot E, Arthur M, Duval J, Courvalin P. Resistance of Enterococci to aminoglycosides and glycopeptides. Clin. Infect. Dis. 15: 495-501 (1992) https://doi.org/10.1093/clind/15.3.495
  16. Clewell DB. Conjugative transposons and the dissemination of antibiotic resistance in Streptococci. Am. Rev. Microbiol. 40: 635-659 (1986) https://doi.org/10.1146/annurev.mi.40.100186.003223
  17. Schaberg DR, Zervos MJ. Intergenic and interspecies gene exchange in gram positive cocci. Antimicrob. Agents Ch. 30: 817-822 (1986) https://doi.org/10.1128/AAC.30.6.817
  18. Campbell A. The future of bacteriophage biology. Nat. Rev. Genet. 4: 471-477 (2003) https://doi.org/10.1038/nrg1089
  19. Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. R. 68: 560-602 (2004) https://doi.org/10.1128/MMBR.68.3.560-602.2004
  20. Allison HE. Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol. 2: 165-174 (2007) https://doi.org/10.2217/17460913.2.2.165
  21. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant Enterococci by PCR. J. Clin. Microbiol. 33: 24-27 (1995)
  22. Klein G. Taxonomy, ecology and antibiotic resistance of Enterococci from food and the gastrointestinal tract. Int. J. Food Microbiol. 88: 123-131 (2003) https://doi.org/10.1016/S0168-1605(03)00175-2
  23. Klein G, Pack A, Reuter G. Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant Enterococci in raw minced beef and pork in Germany. Appl. Environ. Microb. 64: 1825-1830 (1998)
  24. Ben Omar N, Castro A, Lucas R, Abriouel H, Yousif NM, Franz CM, Holzapfel WH, Perez-Pulido R, Martinez-Canamero M, Galvez A. Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst. Appl. Microbiol. 27: 118-130 (2004) https://doi.org/10.1078/0723-2020-00248
  25. Hendrix RW. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506-511(2003) https://doi.org/10.1016/j.mib.2003.09.004
  26. Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni Adel L. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front. Microbiol. 2: 282 (2012)
  27. Jo czyk E, Klak M, Miedzybrodzki R, Gorski A. The influence of external factors on bacteriophages. Folia Microbiol. 56: 191-200 (2011) https://doi.org/10.1007/s12223-011-0039-8
  28. Minakhin L, Goel M, Berdygulova Z, Ramanculov E, Florens L, Glazko G, Karamychev VN, Slesarev AI, Kozyavkin SA, Khromov I, Ackermann HW, Washburn M, Mushegian A, Severinov K. Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: siphoviruses with triplex-forming sequences and the longest known tails. J. Mol. Biol. 378: 468-480 (2008) https://doi.org/10.1016/j.jmb.2008.02.018
  29. Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ. Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J. Bacteriol. 192: 1122-1130 (2010) https://doi.org/10.1128/JB.01293-09
  30. Manson JM, Hancock LE, Gilmore MS. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. P. Natl. Acad. Sci. USA 107: 12269-12274 (2010) https://doi.org/10.1073/pnas.1000139107
  31. Lam MMC, Seemann T, Bulach DM, Gladman SL, Chen H, Haring V, Moore RJ, Ballard S, Grayson ML, Johnson PDR, Howden BP, Stinear TP. Comparative analysis of the first complete Enterococcus faecium genome. J. Bacteriol. 194: 2334-2341 (2012) https://doi.org/10.1128/JB.00259-12
  32. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. Bacteriophage-mediated transduction of antibiotic resistance in Enterococci. Lett. Appl. Microbiol. 52: 559-564 (2011) https://doi.org/10.1111/j.1472-765X.2011.03043.x