DOI QR코드

DOI QR Code

Screening of Lactic Acid Bacteria for Strong Folate Synthesis and Optimization of Fermentation

고엽산 생산능의 유산균 탐색 및 발효 조건 최적화

  • Du, Kyung Min (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Se Jin (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Myung Soo (Department of Hotel Culinary Arts and Tourism, Yeonsung University) ;
  • Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • 두경민 (서울대학교 식품영양학과 식품미생물 연구실) ;
  • 박세진 (서울대학교 식품영양학과 식품미생물 연구실) ;
  • 박명수 (연성대학교 식품과학부 호텔조리과) ;
  • 지근억 (서울대학교 식품영양학과 식품미생물 연구실)
  • Received : 2013.12.24
  • Accepted : 2014.03.04
  • Published : 2014.06.30

Abstract

Folate is a water-soluble vitamin B that is required for the synthesis of amino acids and nucleic acids. It plays an important role in cell division and cell growth in several living organisms. The purpose of this study was to screen strong folate-synthesizing bacteria and to optimize their culture conditions for folate production. Folate production was quantified by microbiological assays by using folate-dependent strain Lactobacillus rhamnosus KCTC 3237. Folate derivatives were identified by LC-MS/MS. Of the 65 strains of bifidobacteria and lactobacilli tested, L. plantarum Fol 708 demonstrated the greatest ability to produce folate. Its optimal pH for folate production was 5.5 in a pH-controlled, lab-scale fermenter. Coculturing L. plantarum Fol 708 with L. brevis GABA 100 in a milk medium enhanced the level of folate produced in comparison to culturing L. plantarum Fol 708 alone.

본 연구에서는 총 65균주의 Bifidobacterium과 Lactobacillus로부터 엽산 생성능력이 있는 11균주의 Lactobacillus를 1차 선정하였다. 그 중 microbiological assay를 통해 엽산 생성능력이 가장 우수한 것으로 선발된 L. plantarum Fol 708을 이용하여, 우유배지에서 L. brevis GABA 100과의 공동배양 및 배양 pH을 일정하게 유지한 후, 각각의 pH조건에서 균체 내부 및 배양 상등액의 엽산 생성과 균체량을 측정하였다. 공동 배양은 1% glutamic acid가 첨가된 우유배지에 균주를 각각 1% (v/v) 접종하여 발효시켰으며, L. plantarum Fol 708과 L. brevis GABA 100의 접종비율이 1:1에서 가장 높은 엽산 생성(약 $8{\mu}g/100mL$)을 보여주었다. 배양 pH을 일정하게 유지한 후 균체량과 엽산 생성을 측정한 경우, 균체량은 pH 4.5에서 가장 높게 측정되었고, 총 엽산 생성은 pH 5.5에서 가장 높게 측정되었다. 본 연구에서 선발한 L. plantarum Fol 708을 이용하면 엽산 함량이 높은 다양한 발효 식품의 개발에 도움이 될 것이다.

Keywords

References

  1. LeBlanc JG, Giori GS, Smid EJ, Hugenholtz J, Sesma F. Folate production by lactic acid bacteria and other food-grade microorganisms. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol. 1: 329-339 (2007)
  2. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MN, Hugenholtz J. Effects of cultivation conditions on folate production by lactic acid bacteria. Appl. Environ. Microbiol. 69: 4542-4548 (2003) https://doi.org/10.1128/AEM.69.8.4542-4548.2003
  3. D'Aimmo MR, Mattarelli P, Biavati B, Carlsson NG, Andlid T. The potential of bifidobacteria as a source of natural folate. J. Appl. Microbiol. 112: 975-984 (2012) https://doi.org/10.1111/j.1365-2672.2012.05261.x
  4. Nor NM, Mohamad R, Foo HL, Rahim RA. Improvement of folate biosynthesis by lactic acid bacteria using response surface methodology. Food Technol. Biotechnol. 48: 243-250 (2010)
  5. Lin MY, Young CM. Folate levels in cultures of lactic acid bacteria. Int. Dairy J. 10: 409-413 (2000) https://doi.org/10.1016/S0958-6946(00)00056-X
  6. Arcot J, Shrestha AK, Gusanov U. Enzyme protein binding assay for determining folic acid in fortified cereal foods and stability of folic acid under different extraction conditions. Food Control 13: 245-252 (2002) https://doi.org/10.1016/S0956-7135(02)00018-X
  7. Horne DW, Patterson D. Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clin. Chem. 34: 2357-2359 (1988)
  8. Garratt LC, Ortori CA, Tucker GA, Sablitzky F, Bennett MJ, Barrett DA. Comprehensive metabolic profiling of mono- and polyglutamated folates and their precursors in plant and animal tissue using liquid chromatography/negative ion electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19: 2390-2398 (2005) https://doi.org/10.1002/rcm.2074
  9. Hyun TH, Tamura T. Trienzyme extraction in combination with microbiologic assay in food folate analysis: an updated review. Exp. Biol. Med. 230: 444-454 (2005)
  10. Vishnumohan S, Arcot J, Pickford R. Naturally-occurring folates in foods: Method development and analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Chem. 125: 736-742 (2011) https://doi.org/10.1016/j.foodchem.2010.08.032
  11. Rossi M, Amaretti A, Raimondi S. Folate production by probiotics bacteria. Nutrients 3: 118-134 (2011) https://doi.org/10.3390/nu3010118
  12. Laino JE, Leblance JG, Savoy de Giori G. Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts. Can. J. Microbiol. 58: 581-588 (2012) https://doi.org/10.1139/w2012-026
  13. Vora A, Riga A, Dollimore D, Alexander KS. Thermal stability of folic acid. Thermochim. Acta. 392: 209-220 (2002)
  14. Gujska E, Michalak J, Klepacka J. Folate stability in two types of rye breads during processing and frozen storage. Plant Foods Hum. Nutr. 64: 129-134 (2009) https://doi.org/10.1007/s11130-009-0114-3
  15. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotics property. Appl. Environ. Microbiol. 73: 179-185 (2007) https://doi.org/10.1128/AEM.01763-06
  16. DeVries JW, Rader JI, Keagy PE, Hudson CA. Anqyal G, Arcot J, Castelli M, Doreanu N, Hudson C, Lawrence P, Martin J, Peace R, Rosner L, Strandler HS, Szpylka J, van den Berq H, Wo C, Wurz C. Microbiological assay-trienzyme procedure for total folate in cereals and cereal foods: collaborative study. J. AOAC Int. 88: 5-15 (2005)
  17. Gutzeit D, Monch S, Jerz G, Winterhalter P, Rychlik M. Folate content in sea buckthorn berries and related products (Hippophae rhanmoides L. ssp. rhamnoides): LC-MS/MS determination of folate vitamer stability influenced by processing and storage assessed by stable isotope dilution assay. Anal. Bioanal. Chem. 391: 211-219 (2008) https://doi.org/10.1007/s00216-008-1905-3
  18. Chen L, Eitenmiller RR. Single laboratory method performance evaluation for the analysis of total food folate by trienzyme extraction and microplate assay. J. Food Sci. 72: 243-247 (2007)
  19. Goli DM, Vanderslice JT. Investigation of the conjugase treatment procedure in the microbiological assay of folate. Food Chem. 43: 57-64 (1991)
  20. Ringling C, Rychlik M. Analysis of seven folates in food by LC-MS/MS to improve accuracy of total folate data. Eur. Food Res. Technol. 236: 17-28 (2013) https://doi.org/10.1007/s00217-012-1849-x

Cited by

  1. Change of Quality Characteristics of Commercial and Prepared Kimchi Depending on Fermentation vol.33, pp.2, 2017, https://doi.org/10.9724/kfcs.2017.33.2.162