DOI QR코드

DOI QR Code

Antimicrobial Chitosan-silver Nanocomposite Film Prepared by Green Synthesis for Food Packaging

녹색합성법에 기인한 식품포장용 키토산-은나노 항균 복합필름의 개발

  • 경규선 (연세대학교 패키징학과) ;
  • 고성혁 (연세대학교 패키징학과)
  • Received : 2014.01.24
  • Accepted : 2014.02.16
  • Published : 2014.06.30

Abstract

We studied the green synthesis and antibacterial activity of chitosan-silver (Ag) nanocomposite films for application in food packaging. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 0.1 MPa, $121^{\circ}C$, for 15-120 s. The formation of AgNPs in chitosan was confirmed by both UV-Visible spectrophotometry and transmission electron microscopy (TEM) and the effects of chitosan-$AgNO_3$ concentration and reaction time on the synthesis of AgNPs in chitosan were examined. The resulting chitosan-Ag composite films were characterized by various analytical techniques and their antibacterial activity was evaluated based on the formation of halo zones around films, indicating inhibition of the growth of Escherichia coli. A fourier-transform infrared (FTIR) spectroscopy analysis showed that free amino groups in chitosan acted as effective reductants and AgNP stabilizers. The composite films exhibited enhanced antibacterial activity with increasing Ag content on the surface of as-prepared composite films.

키토산 바이오폴리머를 활용한 은나노 입자의 효과적인 녹색합성을 수행하였으며 얻어진 키토산-은나노 복합물질의 물리화학적 특성을 분석하고 키토산-은나노 복합필름을 제조, 이들의 항균성을 평가하였다. UV-Visible 흡수 spectrum과 TEM 분석을 통해 키토산 내 은나노 입자가 안정적으로 생성, 분포하고 있음을 확인하였고 키토산 및 질산은의 농도 그리고 반응시간의 변화에 따른 키토산 내 은나노 생성 특성을 조사하였다. 녹색합성된 키토산-은나노 복합물질로부터 EDS 분석 결과 0.9-8.9% 범위의 은나노를 함유한 키토산-은나노 복합필름이 얻어졌으며 FTIR 분석에 의해 은나노 합성과정에서 키토산의 활성아민기와 소량의 히드록시기가 은나노 환원반응에 참여함으로써 키토산이 은나노 입자의 합성을 위한 환원제 및 안정제로 작용하였음을 확인할 수 있었다. 이들 복합필름의 항균정성 평가 결과 순수 키토산 대조군 필름에서는 E. coli에 대한 항균성이 나타나지 않은 반면 키토산-은나노 필름에서는 뚜렷한 항균성을 보였으며 함유된 은의 농도 증가에 따라 항균력 또한 증가하였다. 본 연구결과를 통해 친환경 항균소재로서 녹색합성법에 의해 제조된 키토산-은나노 복합물질을 기능성 포장소재로 응용 가능함을 확인하였으며 향후 포장소재로서 요구되는 수분 및 가스차단성, 식품 내용물과의 반응성, 접촉안전성 및 안정성 등과 같은 다양한 요소의 체계적 연구가 뒤따라야 할 것으로 판단되며 복합필름의 연성, 강성, 내냉 내열성 등 식품포장필름 적용을 위한 지속적인 연구가 수행될 것이다.

Keywords

References

  1. Cho JH, Lee YW, Kim HJ. Study on preparation of environmental-friendly specialty paper using functional antibiotic nano-particle (II). Appl. Chem. Eng. 18: 17-23 (2007)
  2. Gonzalez A, Alvarez Igarzabal CI. Soy protein-poly (latic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloid. 33: 289-296 (2013) https://doi.org/10.1016/j.foodhyd.2013.03.010
  3. Seydim AC, Sarikus G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 39: 639-644 (2006) https://doi.org/10.1016/j.foodres.2006.01.013
  4. Cruz-Romero MC, Murphy T, Morris M, Cummins E, Kerry JP. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34: 393-397 (2013) https://doi.org/10.1016/j.foodcont.2013.04.042
  5. Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, Rahman WAWA, Tan AC, Vikhraman M. Antimicrobial agents for food packaging applications. Trends Food Sci. Tech. 33: 110-123 (2013) https://doi.org/10.1016/j.tifs.2013.08.001
  6. Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. 3: 113-126 (2002) https://doi.org/10.1016/S1466-8564(02)00012-7
  7. Cho JH, Lee YW, Kim HJ, Lee JM. Study on preparation of environmental-friendly specialty paper using functional antibiotic nano-particle (I). Appl. Chem. Eng. 16: 385-390 (2005)
  8. Weng YM, Hotchkiss JH. Anhydrides as antimycotic agents added to polyethylene films for food packaging. Packag. Technol. Sci. 6: 123-128 (1993) https://doi.org/10.1002/pts.2770060304
  9. Muriel-Galet V, Cerisuelo JP, Lopez-Carballo G, Lara M, Gavara R, Hernandez-Munoz P. Development of antimicrobial films for microbiological control of packaged salad. Int. J. Food Microbiol. 157: 195-201 (2012) https://doi.org/10.1016/j.ijfoodmicro.2012.05.002
  10. Kim JY, Kim TY, Yoon JY. Antimicrobial activity and mechanism of silver. Appl. Chem. Eng. 20: 251-257 (2009)
  11. Hwang IS, Cho JY, Hwang JH, Hwang BM, Choi HM, Lee JY, Lee DG. Antimicrobial effects and mechanism(s) of silver nanoparticle. Korean J. Microbiol. Biotechnol. 39: 1-8 (2011)
  12. Courrol LC, Silva FRO, Gomes L. A simple method to synthesize silver nanoparticles by photo-reduction. Colloid. Surface. A 305: 54-57 (2007) https://doi.org/10.1016/j.colsurfa.2007.04.052
  13. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed.-Nanotechnol. 5: 382-386 (2009) https://doi.org/10.1016/j.nano.2009.06.005
  14. Wei D, Qian W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloid. Surface. B 62: 136-142 (2007)
  15. Ghaseminezhad SM, Hamedi S, Shojaosadati SA. Green synthesis of silver nanoparticles by a novel method: comparative study of their properties. Carbohyd. Polym. 89: 467-472 (2012) https://doi.org/10.1016/j.carbpol.2012.03.030
  16. Vidhu VK, Aswathy Aromal S, Philip D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A 83: 392-397 (2011) https://doi.org/10.1016/j.saa.2011.08.051
  17. Bordenave N, Grelier S, Coma V. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules 11: 88-96 (2010) https://doi.org/10.1021/bm9009528
  18. Pinto RJB, Fernandes SCM, Freire CSR, Sadocco P, Causio J, Neto CP, Trindade T. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohyd. Res. 348: 77-83 (2012) https://doi.org/10.1016/j.carres.2011.11.009
  19. Ravi Kumar MNV. A review of chitin and chitosan applications. React. Funct. Polym. 46: 1-27 (2000) https://doi.org/10.1016/S1381-5148(00)00038-9
  20. Park SC, Kang JH, Lim HA. Study on the change in physical and functional properties of paper by the addition of chitosan. J. Korea TAPPI 42: 37-46 (2010)
  21. ASTM. Standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions (E 2149-10). American Society for Testing and Materials, West Conshohocken, PA, USA (2010)
  22. Venkatesham M, Ayodhya D, Madhusudhan A, Babu NV, Veerabhadram G. A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl. Nanosci. 4: 113-119 (2014) https://doi.org/10.1007/s13204-012-0180-y
  23. Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosanbased silver nanoparticles and their antibacterial activity. Carbohyd. Res. 344: 2375-2382 (2009) https://doi.org/10.1016/j.carres.2009.09.001
  24. Wei D, Ye Y, Jia X, Yuan C, Qian W. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohyd. Res. 345: 74-81 (2010) https://doi.org/10.1016/j.carres.2009.10.008
  25. Abdollahi M, Rezaei M, Farzi G. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J. Food Eng. 111: 343-350 (2012) https://doi.org/10.1016/j.jfoodeng.2012.02.012
  26. Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A. Edible antimicrobial films based on chitosan matrix. J. Food Sci. 67: 1162-1169 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb09470.x