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REVERSIBILITY OVER PRIME RADICALS

Da Woon Jung, Yang Lee, and Hyo Jin Sung∗

Abstract. The studies of reversible and 2-primal rings have done
important roles in noncommutative ring theory. We in this note
introduce the concept of quasi-reversible-over-prime-radical (simply,
QRPR) as a generalization of the 2-primal ring property. A ring is
called QRPR if ab = 0 for a, b ∈ R implies that ab is contained in the
prime radical. In this note we study the structure of QRPR rings
and examine the QRPR property of several kinds of ring extensions
which have roles in noncommutative ring theory.

1. Introduction

Throughout this note every ring is an associative ring with identity
unless otherwise stated. Let R be a ring. N∗(R), N∗(R), and N(R)
(resp. N2(R)) denote the lower nilradical (i.e., prime radical), the upper
nilradical (i.e., sum of nil ideals), and the set of all nilpotent elements
(resp. all nilpotent elements of index two) in R, respectively. Note
N∗(R) ⊆ N(R). The polynomial ring with an indeterminate x over a
ring R is denoted by R[x]. Let Cf(x) denote the set of all coefficients of
given a polynomial f(x). Z and Zn denote the ring of integers and the
ring of integers modulo n. Denote the n by n (n ≥ 2) full (resp., upper
triangular) matrix ring over R by Matn(R) (resp., Un(R)). Use eij for
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the matrix with (i, j)-entry 1 and elsewhere 0. ⊕ is used to express
direct sums.

According to Cohn [8], a ring R is called reversible if ab = 0 implies
ba = 0 for a, b ∈ R. Anderson and Camillo [1], observing the rings whose
zero products commute, used the term ZC2 for what is called reversible.
Due to Bell [5], a ring R is called to satisfy the Insertion-of-Factors-
Property if ab = 0 implies aRb = 0 for a, b ∈ R. Narbonne [18] and
Shin [21] used the terms semicommutative and SI for the IFP, respec-
tively. Here we choose “a semicommutative ring” among them, so as
to cohere with other related references. A ring is usually called reduced
if it has no nonzero nilpotent elements. Commutative rings clearly are
semicommutative, and it is easily checked that any reduced ring is semi-
commutative. There exist many non-reduced commutative rings (e.g.,
Znl for n, l ≥ 2), and many noncommutative reduced rings (e.g., direct
products of noncommutative domains). A ring is called Abelian if every
idempotent is central. Semicommutative rings are Abelian through a
simple computation.

A ring R is called 2-primal if N∗(R) = N(R), following Birkenmeier,
Heatherly, and E.K. Lee [6]. Note that a ring R is reduced if and only
if R is both semiprime and 2-primal. Following the literature, a prime
ideal P of a ring R is called completely prime if R/P is a domain. A ring
R is 2-primal if and only if every minimal prime ideal of R is completely
prime, by [21, Proposition 1.11]. Semicommutative rings are 2-primal
through a simple computation, but the converse need not hold as can
be seen by U2(D) over a 2-primal ring D, noting that U2(D) is 2-primal
but non-Abelian.

Let R be a ring. According to Marks [17], R is called NI if N∗(R) =
N(R). Note that R is NI if and only if N(R) forms an ideal if and only
if R/N∗(R) is reduced. Following Rowen [20, Definition 2.6.5], an ideal
P of R is called strongly prime if P is prime and R/P has no nonzero
nil ideals. Maximal ideals are clearly strongly prime, but there exist
many strongly prime ideals which are not maximal (e.g., the zero ideals
of non-simple domains). An ideal P of R is called minimal strongly
prime if P is minimal in the space of strongly prime ideals in R. N∗(R)
of R is the unique maximal nil ideal of R by [20, Proposition 2.6.2],
and we have N∗(R) = {a ∈ R | RaR is a nil ideal of R} =

⋂
{P |

P is a strongly prime ideal of R} =
⋂
{P | P is a minimal strongly

prime ideal of R} by help of [20, Proposition 2.6.7]. 2-primal rings are
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clearly NI, but not conversely by Birkenmeier et al. [6, Example 3.3],
[12, Example 1.2], or Marks [17, Example 2.2].

Due to Lambek [15], a ring R is called symmetric if rst = 0 implies
rts = 0 for all r, s, t ∈ R; while, Anderson and Camillo [1] took the
the term ZC3 for this notion. Lambek proved that a ring R is sym-
metric if and only if r1r2 · · · rn = 0, with n any positive integer, implies
rσ(1)rσ(2) · · · rσ(n) = 0 for any permutation σ of the set {1, 2, . . . , n} and
ri ∈ R [15, Proposition 1]; while, Anderson and Camillo proved this re-
sult independently in [1, Theorem I.1]. Reduced rings are shown directly
to be symmetric by the definition. We will use these facts freely in the
remainder of this note.

Lemma 1.1. For a ring R the following conditions are equivalent:
(1) R is 2-primal;
(2) a2 ∈ N∗(R) for a ∈ R implies a ∈ N∗(R);
(3) abc ∈ N∗(R) for a, b, c ∈ R implies acb ∈ N∗(R);
(4) ab ∈ N∗(R) for a, b ∈ R implies ba ∈ N∗(R);
(5) ab ∈ N∗(R) for a, b ∈ R implies aRb ⊆ N∗(R);
(6) r1r2 · · · rn ∈ N∗(R) for ri ∈ R implies Rrσ(1)Rrσ(2)R · · ·Rrσ(n)R ⊆

N∗(R) for any permutation σ of the set {1, 2, . . . , n}, where n ≥ 2.

Proof. The proof is obtained by the relations among the concepts
above and the fact that R/N∗(R) is reduced if and only if R is 2-primal.

Lemma 1.2. For a ring R the following conditions are equivalent:
(1) R is NI;
(2) a2 ∈ N∗(R) for a ∈ R implies a ∈ N∗(R);
(3) abc ∈ N∗(R) for a, b, c ∈ R implies acb ∈ N∗(R);
(4) ab ∈ N∗(R) for a, b ∈ R implies ba ∈ N∗(R);
(5) ab ∈ N∗(R) for a, b ∈ R implies aRb ⊆ N∗(R);
(6) R/N∗(R) is 2-primal;
(7) r1r2 · · · rn ∈ N∗(R) for ri ∈ R implies Rrσ(1)Rrσ(2)R · · ·Rrσ(n)R ⊆

N∗(R) for any permutation σ of the set {1, 2, . . . , n}, where n ≥ 2.

Proof. The proof is obtained by the relations among the concepts
above, using the facts that R/N∗(R) is reduced if and only if R is NI
and that R/N∗(R) being 2-primal means N(R) = N∗(R).

We start our study by the following induced from Lemma 1.1.
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Definition 1.3. A ring is called quasi-reversible-over-prime-radical
(simply, QRPR) if ab = 0 for a, b ∈ R implies ba ∈ N∗(R).

The following is an immediate consequence of the definition.

Lemma 1.4. For a ring R the following conditions are equivalent:
(1) R is QRPR;
(2) ab = 0 for a, b ∈ R implies baR ⊆ N∗(R);
(3) ab = 0 for a, b ∈ R implies Rba ⊆ N∗(R);
(4) ab = 0 for a, b ∈ R implies RbaR ⊆ N∗(R).

We will use Lemma 1.4 freely. 2-primal rings are QRPR by Lemma
1.1. But the converse need not hold by the following.

Example 1.5. We use the ring and argument in [10, Example 1].
Let F be a field and A = F 〈x, y〉 be the free algebra generated by
noncommuting indeterminates x, y over F . Let R = A/(x2)2, where
(x2) is the ideal of A generated by x2. Then N∗(R) = Rx2R = N2(R)
and N(R) = xRx + Rx2R + Fx, where x and y are identified with
x + (x2)2 and y + (x2)2, respectively. Then N∗(R) 6= N(R), entailing
R is not 2-primal. If ab = 0 for a, b ∈ R, then (ba)2 = 0. This yields
ba ∈ N2(R) = N∗(R) by the computation in [7, Example 2.2]. Thus R
is QRPR.

Following Liang et al. [16], a ring R is called weakly semicommu-
tative if ab = 0 implies aRb ⊆ N(R) for a, b ∈ R. This notion is a
proper generalization of semicommutative rings as can be seen by U2(R)

over a semicommutative ring R. To see this, let A =

(
a1 c1
0 b1

)
, B =(

a2 c2
0 b2

)
∈ U2(R), over a semicommutative ring R, such that AB = 0.

Then a1a2 = 0, b1b2 = 0, and since R is semicommutative, we have

a1Ra2 = 0, b1Rb2 = 0. This yields AU2(R)B ⊆
(

0 R
0 0

)
= N(U2(R)),

and so U2(R) is weakly semicommutative. But U2(R) is non-Abelian
(hence not semicommutative).

Proposition 1.6. QRPR rings are weakly semicommutative.

Proof. Let R be a QRPR ring and suppose that ab = 0 for a, b ∈ R.
Then for r ∈ R, we have

(arbarba)(barb) = 0.
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Since R is QRPR, we also get

(barb)(arbarba) ∈ N∗(R) and (barb)(arbarba)r ∈ N∗(R).

This yields

(arb)4 = ((arbarba)r) (barb) ∈ N∗(R) ⊆ N(R),

entailing arb ∈ N(R). Thus R is weakly semicommutative.

NI rings are weakly semicommutative by Lemma 1.2, so one may
conjecture that NI rings may be QRPR. But we have a negative answer
by the following example, entailing that the converse of Proposition 1.6
need not be true.

Example 1.7. We use the ring and argument in [12, Example 1.2].
Let S be a 2-primal ring, n be a positive integer and Rn be the 2n

by 2n upper triangular matrix ring over S, i.e., Rn = U2n(S). Each
Rn is a 2-primal (hence NI) ring by [6, Proposition 2.5]. Define a map

σ : Rn → Rn+1 by A 7→
(
A 0
0 A

)
, then Rn can be considered as a subring

of Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn). Notice that D = {Rn, σnm},
with σnm = σm−n whenever n ≤ m, is a direct system over I = {1, 2, . . .}.
Set R = lim−→Rn be the direct limit of D. Note R = ∪∞i=1Rn. Then R is
an NI (but not 2-primal) ring with N∗(R) = 0, by the argument in [12,
Example 1.2]. Since R is NI, R is weakly semicommutative by lemma
1.2.

We next show that R is not QRPR. To see that, let a = e23 and
b = e12 in R. Then e23, e12 ∈ Rk for some k ≥ 1. We get ab = 0, but
ba = e13 /∈ N∗(R) = 0. So R is not QRPR.

The following provides a method by which we can examine the QRPR
property of given rings.

Theorem 1.8. Let R be a ring and I be a proper ideal of R such
that R/I is QRPR. If I is 2-primal as a ring without identity then R is
QRPR.

Proof. Let ab = 0 for a, b ∈ R. Then bIa is a nil subset of I, and
b̄ā ∈ N∗(R/I) since R is QRPR.

Assume that I is 2-primal as a ring without identity. Then I/N∗(I) is
a reduced ring (i.e., N(I) = N∗(I)), entailing that N(I) = N∗(I) is a nil
ideal of R by help of Andrunakievic [9, Lemma 61] (i.e., (RN∗(I)R)3 ⊆
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IRN∗(I)RI = IN∗(I)I ⊆ N∗(I)). This yields bIa ⊆ N(I) = N∗(I) ⊆
N∗(R), so

(baI)(baI) · · · (baI) = b(aIbaI · · · b)aI ⊆ bIaI ⊆ N∗(I).

Since I/N∗(I) is a reduced ring, we get baI ⊆ N∗(I) ⊆ N∗(R). Then
baI ⊆ P for any minimal prime ideal P of R. But P is prime, so
ba ∈ P or I ⊆ P . Here assume ba /∈ P . Then I ⊆ P , and so b̄ā ∈
N∗(R/I) ⊆ P/I. This yields ba ∈ P , a contradiction. Consequently
ba ∈ P , entailing ba ∈ N∗(R). This concludes that R is QRPR.

As an application of Theorem 1.8, consider E = Un(R) for n ≥ 2 over
a 2-primal ring R. Then

N(E) = {(aij) ∈ Un(R) | aii ∈ N∗(R) for all i} = N∗(E),

entailing E
N∗(E)

∼=
R

N∗(R)
⊕ · · · ⊕ R

N∗(R)︸ ︷︷ ︸
n−times

. Since R
N∗(R)

is a reduced ring,

E
N∗(E)

is QRPR by Proposition 1.9 to follow. But N∗(E) is 2-primal, so

E is QRPR by Theorem 1.8, letting I = N∗(E). Theorem 1.8 is also
applicable to the case of setting I = {(aij) ∈ Un(R) | aii = 0 for all i ∈
N∗(R)} = N∗(E), noting that R

I
∼= R⊕ · · · ⊕R︸ ︷︷ ︸

n−times

.

Then one may ask whether R is QRPR if I is NI in Theorem 1.8.
However the answer is negative by Example 1.7. Let R be the ring in
Example 1.7, N∗(R) is not 2-primal by the argument in Example 1.7.
But R/N∗(R) is 2-primal (hence QRPR).

Proposition 1.9. The class of QRPR rings is closed under subrings
and direct sums.

Proof. Let R be a QRPR ring and S be a subring of R. Take ab = 0,
for a, b ∈ S. Then ba ∈ N∗(R). Since N∗(R) ∩ S ⊆ N∗(S), we have
ba ∈ N∗(S).

Suppose that Ri is a QRPR ring for each i in a nonempty index set
I, and let D be the direct sum of Ri’s. Let a = (ai), b = (bi) ∈ D with
ab = 0. Then aibi = 0 for each i ∈ I and so biai ∈ N∗(Ri). Notice that
N∗(⊕i∈IRi) = ⊕i∈IN∗(Ri). So we have ba ∈ N∗(⊕i∈IRi), entailing D is
QRPR.

As in the proof of Proposition 1.9, N∗(R) ∩ S ⊆ N∗(S) holds for any
ring R. But the converse inclusion need not hold as can be seen by the
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ring R in Example 1.7. In fact, consider the subring R1 = U2(A) over a

2-primal ring A. Then N∗(R1) =

(
N∗(A) A

0 N∗(A)

)
6= 0 and N∗(R) = 0.

Proposition 1.10. A ring R is QRPR if and only if Un(R) is a QRPR
ring for n ≥ 2.

Proof. It suffices to establish necessity by Proposition 1.9 since R is
a subring of Un(R). Let R be a QRPR ring, and suppose AB = 0 for
A = (aij), B = (bij) ∈ Un(R). Then aiibii = 0 for all i ∈ {1, · · · , n}.
Since R is QRPR, we have biiaii ∈ N∗(R). Notice that

N∗(Un(R)) =


N∗(R) R · · · R

0 N∗(R) · · · R
...

...
. . .

...
0 0 N∗(R)

 .

Thus BA ∈ N∗(Un(R)).

From [11], given a ring R and a bimodule RMR, the trivial extension of
R by M is the ring T (R,M) = R ⊕M with the usual addition and the
following multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This

is isomorphic to the ring of all matrices

(
r m
0 r

)
, where r ∈ R and

m ∈M , and the usual matrix operations are used. Propositions 1.9 and
1.10 provide the following.

Corollary 1.11. A ring R is QRPR if and only if the trivial exten-
sion T (R,R) is QRPR.

One may suspect that if a ring R is QRPR, then Matn(R) is QRPR
(or weakly semicommutative) for n ≥ 2. But the following example
shows that Matn(R) cannot be weakly semicommutative (hence cannot
be QRPR).

Example 1.12. Let R be any ring and consider Mat2(R). We first

have

(
0 1
0 0

)(
1 1
0 0

)
= 0, but(

0 1
0 0

)(
0 0
1 1

)(
1 1
0 0

)
=

(
1 1
0 0

)
/∈ N(Mat2(R)).

So Mat2(R) is not weakly semicommutative.
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For the general case, let A = eij, B = ek1 + · · ·+ ekn ∈Matn(R) with
j 6= k. Then AB = 0 but

A(ej1 + · · ·+ ejk + · · ·+ ejn)B = eikB = ei1 + · · ·+ ein /∈ N(Matn(R)).

Following Rege and Chhawchharia [19, Definition 1.1], a ring R is
called Armendariz if whenever any polynomials f(x), g(x) ∈ R[x] satisfy
f(x)g(x) = 0, we have ab = 0 for all a ∈ Cf(x) and b ∈ Cg(x). Every
reduced ring is Armendariz by [4, Lemma 1]. Armendariz rings are
Abelian by the proof of [2, Theorem 6] (or [13, Lemma 7]).

The concepts of Armendariz and QRPR are independent of each other
by the following.

Example 1.13. (1) Let F be a field and A = F 〈a, b〉 be the free
algebra generated by noncommuting indeterminates a, b over F . Let
R = A/(b2), where (b2) is the ideal of A. Then R is Armendariz by [3,
Theorem 4.7]. But R is not QRPR as can be seen by the computation
that b̄(b̄ā) = 0 and (b̄ā)b̄ā /∈ N(R).

(2) U2(R) is a QRPR ring by Proposition 1.10, but this ring is non-
Abelian. So U2(R) is not Armendariz since Armendariz rings are Abelian.

Lemma 1.14. [2, Proposition 1] Suppose that R is an Armendariz
ring. If f1, · · · , fn are polynomials in R[x] such that f1 · · · fn = 0, then
a1 · · · an = 0 where ai is a coefficient of fi.

Proposition 1.15. Let R be an Armendariz ring. If R is QRPR,
then R[x] is QRPR.

Proof. LetR be a QRPR ring. Assume f =
∑m

i=0 aix
i, g =

∑n
j=0 bjx

j ∈
R[x] satisfy fg = 0. Then since R is Armendariz, aibj = 0 for all i and
j. But since R is QRPR, we have bjai ∈ N∗(R) for all i, j. We already
have N∗(R)[x] = N∗(R[x]) by [14, Theorem 10.19] for any ring R. Thus
we get gf ∈ N∗(R[x]) from the fact that bjai ∈ N∗(R) for all i, j. This
implies that R[x] is QRPR.
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