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NEW SELECTION APPROACH FOR RESOLUTION

AND BASIS FUNCTIONS IN WAVELET REGRESSION

Chun Gun Park

Abstract. In this paper we propose a new approach to the variable
selection problem for a primary resolution and wavelet basis func-
tions in wavelet regression. Most wavelet shrinkage methods focus
on thresholding the wavelet coefficients, given a primary resolution
which is usually determined by the sample size. However, both a
primary resolution and the basis functions are affected by the shape
of an unknown function rather than the sample size. Unlike existing
methods, our method does not depend on the sample size and also
takes into account the shape of the unknown function.

1. Introduction

In wavelet representation-based nonparametric regression, the focus
has been on thresholding the wavelet coefficients, given a primary res-
olution which is usually determined by a sample size. By intuition, a
proper primary resolution might be affected by the shape of an unknown
function rather than the the sample size [10,11].

Usually a shrinkage procedure involves determining a thresholding
value and then applying a shrinkage function to the coefficients us-
ing the threshold. Several approaches to thresholding have been stud-
ied [1, 3–5, 9, 11, 14]. Donoho and Johnstone [3, 4] proposed VisuShrink
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and SureShrink as minimize approaches. Nason [9] considered a cross-
validation method, and Antoniadis and Fan [1] introduced nonlinear
regularized wavelet estimators for estimating nonparametric regression
functions when the sampling points are not uniformly spaced. Their
method was developed using the smoothing clipped absolute deviation
penalty. Vidakovic and Ruggeri [14] proposed a Bayesian Adaptive Mul-
tiresolution Shrinker method to address the problem of model-induced
wavelet shrinkage. They showed that their approach resulted in simple
optimal shrinkage rules to be used in fast wavelet denoising to address
the problem of model-induced wavelet shrinkage. Johnstone and Silver-
man [5] investigated an empirical Bayesian thresholding rule. Park et
al. [11] also proposed a Bayesian method to select a primary resolution
and the wavelet basis functions with the thresholding value determined
by the Bayes factor. Although Park et al.’s approach is able to select
a primary resolution, which does not depend on the sample size, their
selection method based on the Bayes factor cannot reflect the character-
istic of the unknown function due to the criterion based on the Bayes
factor.

To the best of our knowledge, none of these existing thresholding-
based approaches can reflect the shape of the unknown function to select
a primary resolution. If the unknown function is a smooth function, we
have, by intuition, a high chance to select a low resolution level regardless
of the a sample size. On the other hand, if an unknown function is a
wiggled function, we can select a high resolution level [10, 11]. Hence,
the primary resolution is not affected by the sample size, but the shape
of the unknown function.

Therefore, in this paper, we propose a new approach to determine a
primary resolution and wavelet basis functions. Our approach takes into
account the pattern of posterior probabilities for nested models which
depend on the shape of the unknown function. From Figure 1, our
idea is motivated by the fact that ideal nested models have the spe-
cial structure of the posterior probabilities. For an example, if the true
nested model contains only one independent variable, then the posterior
probabilities for any nested models are one. If the true model has only
three independent variables for the nested models, the posterior proba-
bility corresponding to a nested model is less than one until including
the three variables. Hence, it can be applied to any sample size, un-
like typical discrete wavelet transformations with the sample size of the
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form n = 2J for some positive integer J . Furthermore, our approach se-
lects a primary resolution and wavelet basis functions based on the true
underlying function estimated by computing the corresponding wavelet
coefficients of the selected wavelet basis functions. Therefore, if the cho-
sen primary resolution based on the sample size is too high, our approach
can reduce the computational cost. In contrast, if the chosen primary
resolution based on the sample size is too low, the accuracy of fitting
the unknown function could be increasing.

This article is organized as follows. In Section 2, we briefly review
wavelet regression. Section 3 describes the motivation of our problem
and our new approach to selecting a resolution and wavelet basis func-
tions. In Section 4, we conduct a simulation to report some results for
test functions with several sample sizes. Section 5 contains conclusion
and further works.

2. Wavelet regression

Suppose that we have n paris of observations (xi, yi) and consider the
following nonparametric regression

yi = f(xi) + εi, i = 1, . . . , n(1)

where f(·) is an unknown function and εi’s are independent and identi-
cally distributed random errors. We assume that xi’s are equally spaced
points in the unit interval. The goal is to estimate the underlying func-
tion f . We can estimate f(x) using a wavelet series. An orthogonal
wavelet basis in L2(R) is a collection of functions obtained from trans-
lations and dilations of a scaling function φ and a mother wavelet ψ [2].
From (1) any function f ∈ L2(R), for any integer J0, can therefore be
represented by a wavelet series as

f(x) =
∑
k∈Z

s(J0,k)φ(J0,k)(x) +
∑
j≥J0

∑
k∈Z

d(j,k)ψ(j,k)(x).(2)

The scaling coefficients s(J0,k) and the wavelet coefficients d(j,k) are de-
fined to be s(J0,k) =

∫
f(x)φ(J0,k)(x)dx and d(j,k) =

∫
f(x)ψ(j,k)(x)dx,

respectively, with smoothing function φ(J0,k)(x) = 2J0/2φ(2J0x − k) and

detailed function ψ(j,k)(x) = 2j/2ψ(2jx − k). For multi-resolution anal-
ysis, wavelet expansion with a primary resolution m is the orthogonal
projection Psf of f onto a V -subspace which is a sequence of subspaces
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of functions in L2(R) [7]. It can be expressed in terms of the scaling
function only

Pmf(x) =
∑
k∈Z

s(J0,k)φ(J0,k)(x) +
m∑

j≥J0

∑
k∈Z

d(j,k)φ(j,k)(x) =
∑
k∈Z

c(m,k)φ(m,k)(x)

which implies that lims→∞Psf(x) = f(x). Wavelet regression has in the
following three steps:

• Step 1: Apply the discrete wavelet transformation (DWT) to y;
DWT calculates the coefficients of the wavelet series expansion for
a discrete signal of final extent. In other words, given a vector of
function values f = (f(x1), . . . , f(xn))T at equally spaced points
xi, the DWT of f is given by

f = Wθ

where θ = (θ1, . . . , θn)T is a vector consisting of both discrete scal-
ing and wavelet coefficients and W is an orthogonal n× n matrix
associated with the chosen orthogonal wavelet basis. When xi’s
are equally spaced in the interval [0,1], W consists of the values

of the scaled wavelet basis functions φ̃m,k(xi) = n−1/2φm,k(xi). We
use Daubechies wavelets because of their nice properties such as
orthogonality, compact support and different degrees of smooth-
ness.
• Step 2: Threshold the empirical wavelet coefficients; this step is

crucial as it is well known that shrinking the coefficients deter-
mines the properties of f̂ . Usually a shrinkage procedure involves
determining a thresholding value and then applying a shrinkage
function to the coefficients using the threshold.
• Step 3: Perform the the inverse DWT (IDWT) to get f̂ ; Because

of the orthogonality of W, the coefficients are obtained simply by
IDWT

θ = WT f .

The corresponding wavelet coefficients are set to be θk = n1/2cs,k.
We note that in the DWT, it is required that the sample size is
n = 2J for some positive integer J . However, our approach, which
will be explained in the next section, does not depend on the sample
size.



New Selection Approach for Resolution and Basis Functions 293

For a predetermined primary resolutionm, these three steps for wavelet
regression are typically performed. The primary resolution is usually de-
termined solely by the sample size. However, a proper primary resolution
might be affected by the shape of the underlying function rather than
by the sample size. Therefore, in the next section, we propose a new
method to select a primary resolution as well as the basis functions. Un-
der a Bayesian framework, we propose a method of selecting a subset
of wavelet basis functions, which may be viewed as a version of hard
thresholding whose a thresholding value is determined by the pattern
of posterior probabilities of the subsets of the wavelet basis functions.
The true underlying function is estimated by the corresponding wavelet
coefficients of the selected wavelet functions.

3. New selection method for resolution and basis functions

Given a primary resolution m, the model (2) can be defined as

Y = WΘ + ε(3)

where Y = (y1, ..., yn)T , Θ = [θ−1, θ0, ..., θm], W = [W−1,W0, ...,Wm],
and ε follows N(0, σ2In).

Here θ−1 is the n×q(0) column vector of the coefficients corresponding
to the wavelet basis functions in the smoothing part, {φ0,k}, and θi, i =
0, 1, ...,m, are the n×q(i) column vector of the coefficients corresponding
to the wavelet basis functions in the detailed part, {ψi,k}, where q(i)
denotes the number of wavelet basis functions at the resolution i. Further
define W−1 = {φ(0,k)} and Wi = {ψ(i,k)}, i = 0, 1, ...,m.

For the choice of a primary resolution, we propose a Bayesian model
selection method based on the posterior model probability. However,
direct application of a Bayesian model selection method has several dis-
advantages: (i) it tends to select a low primary resolution regardless of
the unknown functions as the sample size increases, (ii) it is computa-
tionally expensive because the number of candidate models is huge and
furthermore, the number of wavelet coefficients increase rapidly as the
level of the primary resolution becomes high, and (iii) its selection cri-
terion is based on the Bayes factor and cannot reflect the characteristic
of the unknown function.

Therefore, we consider a new method under nested models [11]

Model − 1, y = W−1θ−1 + ε
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Model 0, y = W−1θ−1 +W0θ0 + ε
...

Model m, y = W−1θ−1 +W0θ0 + . . .+Wmθm + ε,

and use noninformative prior distributions of θm and m in order to obtain
a closed form of the posterior probability so that the computational cost
is reduced. Selecting the primary resolution is equivalent to finding the
best model. For each model on a given resolution level, we calculate the
posterior model probability using the following priors distributions;

• Given σ2 and m, the prior for θm is

p(θm|σ2,m) ∝ constant

• The prior for each model M is

p(M) =
1

m+ 2
, M = −1, 0, 1, . . . ,m.

Using these priors and the orthogonal property (W T
mWm = Iq(m)), a

posterior probability of the primary resolution parameter m is then given
by

p(m|Y, σ2) ∝
∫
p(m)p(y|θm, σ2,m)p(θm|σ2,m)dθ

∝ exp(
1

2
Y TWmW

T
mY ).(4)

To select a primary level of resolution, the Bayes factor might be used.
However, we note that the selection based on the Bayes factor does not
take into account the characteristics of the unknown function. If the
unknown function is smooth, we might select the low resolution level
because the posterior probability already reaches 1 at the low resolution
level. If the unknown function is a wiggled function, we can select the
high resolution level because the posterior probability reaches 1 at the
high resolution level. Hence the change pattern of posterior probability
rapidly reaches 1 when the unknown function is smooth, while slowly
goes to 1 when the unknown function is wiggled. However, the selection
based on the Bayes factor is not able to incorporate these important
facts. Hence we propose a new selection procedure for a primary reso-
lution based on the pattern of the posterior probability as well as the
characteristic of the unknown function.

In convenience of notation, for a selected resolution m0, we rewrite
the wavelet regression (2) and (3) in order to select the basis functions
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as follows:

yi = ϕ1(xi)θ1 + · · ·+ ϕN(xi)θN + εi, i = 1, ..., n,(5)

where until the primary resolution, m0, θi is the ith wavelet coefficient
corresponding to ϕi being the ith wavelet basis function, and N is the
number of the wavelet basis functions which are defined such that

|
n∑

i=1

ϕ1(xi)yi| ≥ |
n∑

i=1

ϕ2(xi)yi| ≥ · · · ≥
n∑

i=1

|ϕN(xi)yi|.

From (5) we can obtain the same form of the posterior model probability
except for the order of the wavelet basis functions in the design matrix
and the posterior model probability for the model selection is

p(k|Y,X, σ2) ∝ exp(
1

2σ2
Y TBkB

T
k Y ), k = 1, 2, . . . , N(6)

whereBk = [{ϕ1(X)}, . . . , {ϕk(X)}] is a n×k matrix andX = (x1, ..., xn)T .

3.1. Motivation for the selection of nested models.

The motivation of our new selection procedure for a primary res-
olution and wavelet basis functions is to use the pattern of posterior
probabilities for the concave nested models. When the shape of the
unknown function is very smoothing and the sample size is very large,
i.e. more than 210, the fitted functions may be overestimated and the
computational cost using MCMC is very expensive.

To overcome these problems for the wavelet regression model selec-
tion, we employ ideal nested models from Figure 1. If the optimal model
is Model 1, then the posterior probabilities for all other nested models,
except for Model -1 and Model 0, are all 1. However the pattern of ac-
tual posterior probabilities might be the same as that of the ideal nested
models. Therefore, we want to find the proper resolution level such that
the pattern of actual posterior probabilities might be similar to that of
ideal nested models.

3.2. The procedure for the selection of nested models.
We want to find the resolution (or basis functions) whose posterior prob-
ability is the most close to the ideal posterior probability. To do this, we
proceed using the following procedure for selection of resolution using
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Figure 1. Posterior probabilities under ideal nested models
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the relative ratio between the ideal posterior probability and the ob-
served posterior probability. Consider the plot (Figure 2) between the
levels of resolution and posterior probabilities.

• Step 1: Calculate posterior probabilities from (4) or (6).
• Step 2: Construct the rectangle with four points (i, p(i|Y, σ2)),

(i + 1, p(i|Y, σ2)), (i, 1), (i + 1, 1) and obtain the area of this
rectangle.
• Step 3: Within this rectangle, obtain the linear line passing through

the two points (i, p(i|Y, σ2)) and (i+ 1,1).
• Step 4: Within this rectangle, obtain the area under the linear line

to pass two points (i, p(i|Y, σ2)) and (i + 1,1); define this area as
A.
• Step 5: Obtain the area under the linear line passing through the

two points (i, p(i|Y, σ2)) and (i+ 1, p(i+ 1|Y, σ2)); define this area
as Ai.
• Step 6: Obtain Bi = A− Ai.
• Step 7: Repeat Step 2-6 for all i and obtain Ai and Bi.
• Step 8: Calculate ratios Ri

Ri =
Bi

Ai +Bi

, i = 1, 2, . . . ,m.

• Step 9: Find a change resolution point such that

m0 = {j|min Rj j = 2, . . . ,m}
provides a dramatic change of the posterior probability. If there is no
such change point, then m0 = m, which is the maximum of resolutions
obtained from

m0 = argminmabs(Y
TY − Ŷ T

m Ŷm), m = −1, 0, 1, ...

where Ŷm is the fitted Y values on the resolution m using the wavelet
coefficients estimated by quadrature type estimator [11]. Here m0 is
called a maximum resolution.

4. Simulation study

In simulation study we fucus on determining a primary resolution.
To do this, we consider the following four nonlinear functions f(x) (see
Figure 3),

• Cosine function: f(x) = 0.5 cos(2.2π/3 + 8x) + 0.5;
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Figure 2. Resolution selection method



New Selection Approach for Resolution and Basis Functions 299

Figure 3. Four True functions used for simulation studies

• Block function: f(x) =
∑11

j=1 hjK(x− tj),
where K(t) = {1+sign(t)}/2, tj = (.1, .13, .15, .23, .25, .40, .44, .65,
.76, .78, .81) and hj = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2);

• Heavy Sine function: f(x) = 4 sin(4πx)− sign(.72− x);

• Doppler function: f(x) = 0.6(
√
x(1− x)) sin{2.1π/(x + 0.05)} +

0.2;

with two cases of error variances, σ2=(0.052, 0.12), and eight cases of
sample sizes, n = (30, 32, 100, 128, 500, 512, 2000, 2048). Note that the
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Cosine function has a relatively smooth compared to other functions,
while Doppler function is the most wiggled function among them. Nei-
ther the Block function nor the Heavy Sine function are continuous func-
tions. We expect that the Cosine function has a lower primary resolu-
tion, while the other functions might have higher primary resolutions.

Figure 4-11 show the results of selecting primary resolutions for each
function with 100 repetitions. For the Cosine function, our selected
resolutions are 2 under all combinations. For the Block function, our
selected resolution is 4 when the sample size is 30 or 32 and it is 5 when
the sample size is 100 or 128. However, it is 7 when the sample size is
500 or 512, while it is 9 when the sample size is 2000 or 2048. For the
Doppler function, our selected resolutions are similar to the maximum
resolution. For the HeaviSine function, our selected resolutions are most
3, while the maximum resolution increases as the sample size increases.

Therefore, the proposed method estimates lower primary resolutions
for the Cosine function and the HeaviSine function, and higher resolu-
tions for other functions.

Figure 4. Resolutions selected for the cosine function
with σ = 0.05
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Figure 5. Resolutions selected for the cosine function
with σ = 0.1

Figure 6. Resolutions selected for the block function
with σ = 0.05
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Figure 7. Resolutions selected for the block function
with σ = 0.1

Figure 8. Resolutions selected for the doppler function
with σ = 0.05
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Figure 9. Resolutions selected for the doppler function
with σ = 0.1

Figure 10. Resolutions selected for the heavisine func-
tion with σ = 0.05
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Figure 11. Resolutions selected for the heavisine func-
tion with σ = 0.1

5. Conclusion

In this paper, we proposed a new method for selecting the primary
resolution and the wavelet basis functions. The main contribution of
our proposed method is that it does not depend on the sample size,
which is a major restriction of the classical wavelet shrinkage method
and also provides new criterion selection based on the characteristics
of the unknown function. To the best of our knowledge, none of the
existing thresholding based approaches can reflect the characteristics of
the unknown function to select a primary resolution and wavelet basis
functions. The simulation study suggests that our approach can be an
alternative to a classical nonlinear wavelet shrinkage. Our approach can
be applicable to any type of functions including non-smoothing func-
tions. However, our approach is based on equally spaced data. It is
worthwhile future research to extend to the case of unequal spaced data.
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