AN ADDITIVE FUNCTIONAL INEQUALITY

Sung Jin Lee, Choonkil Park, and Dong Yun Shin*

Abstract. In this paper, we solve the additive functional inequality

$$
\|f(x)+f(y)+f(z)\| \leq\|\rho f(s(x+y+z))\|,
$$

where s is a nonzero real number and ρ is a real number with $|\rho|<3$.
Moreover, we prove the Hyers-Ulam stability of the above additive functional inequality in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [12] concerning the stability of group homomorphisms. Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [9] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [4] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

In [5], Gilányi showed that if f satisfies the functional inequality

$$
\begin{equation*}
\left\|2 f(x)+2 f(y)-f\left(x y^{-1}\right)\right\| \leq\|f(x y)\| \tag{1}
\end{equation*}
$$

Received April 6, 2014. Revised June 9, 2014. Accepted June 9, 2014.
2010 Mathematics Subject Classification: 39B62, 39B72.
Key words and phrases: Jordan-von Neumann functional equation, Hyers-Ulam stability, functional inequality.

* Corresponding author.
(c) The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
then f satisfies the Jordan-von Neumann functional equation

$$
2 f(x)+2 f(y)=f(x y)+f\left(x y^{-1}\right)
$$

See also [10]. Gilányi [6] and Fechner [3] proved the Hyers-Ulam stability of the functional inequality (1).

In Section 2, we solve the additive functional inequality

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\| \leq\|\rho f(s(x+y+z))\| \tag{2}
\end{equation*}
$$

and prove the Hyers-Ulam stability of the additive functional inequality (2).

Park, Cho and Han [8] investigated the additive functional inequalities for the case $\rho=s=1$, and the case $\rho=2$ and $s=\frac{1}{2}$.

Throughout this paper, let X be a normed space with norm $\|\cdot\|$ and Y a Banach space with norm $\|\cdot\|$. Assume that s is a nonzero real number and that ρ is a real number with $|\rho|<3$.

2. The additive functional inequality (2)

Lemma 2.1. If a mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\| \leq\|\rho f(s(x+y+z))\| \tag{3}
\end{equation*}
$$

for all $x, y, z \in X$, then $f: X \rightarrow Y$ is additive.
Proof. Letting $x=y=z=0$ in (3), we get

$$
\|3 f(0)\| \leq\|\rho f(0)\| .
$$

So $f(0)=0$.
Letting $z=-x$ and $y=0$ in (3), we get

$$
\|f(x)+f(-x)\| \leq\|\rho f(0)\|=0
$$

for all $x \in X$. Hence $f(-x)=-f(x)$ for all $x \in X$.
Letting $z=-x-y$ in (3), we get

$$
\|f(x)+f(y)+f(-x-y)\| \leq\|\rho f(0)\|=0
$$

for all $x, y \in X$. So $f(x)+f(y)=-f(-x-y)=f(x+y)$ for all $x, y \in X$, as desired.

Corollary 2.2. If a mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
f(x)+f(y)+f(z)=\rho f(s(x+y+z)) \tag{4}
\end{equation*}
$$

for all $x, y, z \in X$, then $f: X \rightarrow Y$ is additive.

Now, we prove the Hyers-Ulam stability of the additive functional inequality (2) in Banach spaces.

Theorem 2.3. Let $r>1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
\|f(x)+f(y)+f(z)\| & \leq\|\rho f(s(x+y+z))\| \\
& +\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{5}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $h: X \rightarrow$ Y such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{2+3 \cdot 2^{r}}{2^{r}-2} \theta\|x\|^{r} \tag{6}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y=z=0$ in (5), we get $f(0)=0$.
Letting $y=-x$ and $z=0$ in (5), we get

$$
\|f(x)+f(-x)\| \leq 2 \theta\|x\|^{r}
$$

for all $x \in X$. So

$$
\begin{equation*}
\|f(2 x)+f(-2 x)\| \leq 2 \cdot 2^{r} \theta\|x\|^{r} \tag{7}
\end{equation*}
$$

for all $x \in X$.
Letting $y=x$ and $z=-2 x$ in (5), we get

$$
\begin{equation*}
\|2 f(x)+f(-2 x)\| \leq\left(2+2^{r}\right) \theta\|x\|^{r} \tag{8}
\end{equation*}
$$

for all $x \in X$. It follows from (7) and (8) that

$$
\begin{equation*}
\|2 f(x)-f(2 x)\| \leq\left(2+3 \cdot 2^{r}\right) \theta\|x\|^{r} \tag{9}
\end{equation*}
$$

for all $x \in X$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{2+3 \cdot 2^{r}}{2^{r}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \frac{2+3 \cdot 2^{r}}{2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{r j}} \theta\|x\|^{r} \tag{10}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (10) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for
all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $h: X \rightarrow Y$ by

$$
h(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (10), we get (6).

It follows from (5) that

$$
\begin{aligned}
\|h(x)+h(y)+h(z)\| & =\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)+f\left(\frac{z}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left\|\rho f\left(s \frac{x+y+z}{2^{n}}\right)\right\| \\
& +\lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \\
& =\|\rho h(s(x+y+z))\|
\end{aligned}
$$

for all $x, y, z \in X$. So

$$
\|h(x)+h(y)+h(z)\| \leq\|\rho h(s(x+y+z))\|
$$

for all $x, y, z \in X$. By Lemma 2.1, the mapping $h: X \rightarrow Y$ is additive.
Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (6). Then we have

$$
\begin{aligned}
\|h(x)-T(x)\| & =2^{n}\left\|h\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq 2^{n}\left(\left\|h\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|+\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|\right) \\
& \leq \frac{2\left(2+3 \cdot 2^{r}\right) 2^{n}}{\left(2^{r}-2\right) 2^{n r}} \theta\|x\|^{r},
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $h(x)=T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h: X \rightarrow Y$ is a unique additive mapping satisfying (6).

Theorem 2.4. Let $r<1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (5). Then there exists a unique additive mapping $h: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-h(x)\| \leq \frac{2+3 \cdot 2^{r}}{2-2^{r}} \theta\|x\|^{r} \tag{11}
\end{equation*}
$$

for all $x \in X$.

Proof. It follows from (9) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{2+3 \cdot 2^{r}}{2} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \frac{2+3 \cdot 2^{r}}{2} \sum_{j=l}^{m-1} \frac{2^{r j}}{2^{j}} \theta\|x\|^{r} \tag{12}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (12) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $h: X \rightarrow Y$ by

$$
h(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (12), we get (11).

The rest of the proof is similar to the proof of Theorem 2.3.
By the triangle inequality, we have

$$
\begin{aligned}
& \|f(x)+f(y)+f(z)\|-\|\rho f(s(x+y+z))\| \\
& \leq\|f(x)+f(y)+f(z)-\rho f(s(x+y+z))\| .
\end{aligned}
$$

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the additive functional equation (4) in Banach spaces.

Corollary 2.5. Let $r>1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \|f(x)+f(y)+f(z)-\rho f(s(x+y+z))\| \\
& \quad \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{13}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $h: X \rightarrow$ Y satisfying (6).

Corollary 2.6. Let $r<1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (13). Then there exists a unique additive mapping $h: X \rightarrow Y$ satisfying (11).

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[3] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[4] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
[6] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707710.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[8] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordanvon Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
[9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[10] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.
[11] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

Sung Jin Lee
Department of Mathematics
Daejin University
Kyeonggi 487-711, Korea
E-mail: hyper@daejin.ac.kr
Choonkil Park
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail: baak@hanyang.ac.kr
Dong Yun Shin
Department of Mathematics
University of Seoul
Seoul 130-743, Korea
E-mail: dyshin@uos.ac.kr

