# COMBINATORIAL INTERPRETATIONS OF THE ORTHOGONALITY RELATIONS FOR SPIN CHARACTERS OF $\tilde{S}_{n}$ 

Jaejin Lee


#### Abstract

In 1911 Schur[6] derived degree and character formulas for projective representations of the symmetric groups remarkably similar to the corresponding formulas for ordinary representations. Morris[3] derived a recurrence for evaluation of spin characters and Stembridge [8] gave a combinatorial reformulation for Morris' recurrence. In this paper we give combinatorial interpretations for the orthogonality relations of spin characters based on Stembridge's combinatorial reformulation for Morris' rule.


## 1. Introduction

The projective representations of the symmetric groups were originally studied by Schur. In his fundamental paper[6], Schur derived degree and character formulas for projective representations of the symmetric groups remarkably similar in style to the corresponding formulas for ordinary representations due to Frobenius. Morris[3] derived a recurrence for evaluation of spin characters, which is an analogue of the well-known Murnaghan-Nakayama formula for ordinary characters of the symmetric group $S_{n}$. Stembridge[8] then gave a combinatorial reformulation for Morris' recurrence using shifted rim hook tableaux,

Received March 14, 2014. Revised June 9, 2014. Accepted June 9, 2014.
2010 Mathematics Subject Classification: 05E10.
Key words and phrases: partition, shifted rimhook tableaux, spin character, symmetric function, $P$-function, $Q$-function, orthogonality relation.
(c) The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
rather than the machinery of Hall-Littlewood functions used by Morris. Stembridge[7] found a Frobenius-type characteristic map and an analogue of the Littlewood-Richardson rule. Sagan[4] and Worley[11] has developed independently a combinatorial theory of shifted tableaux parallel to the theory of ordinary tableaux. This theory includes shifted versions of the Robinson-Schensted-Knuth correspondence, Green's invariants, Knuth relation, and Schützenberger's jeu de taquin. In [9] and [10] White gave combinatorial proofs of the orthogonality relations for the ordinary characters of $S_{n}$. His proof is based on the MurnaghanNakayama formula for ordinary characters of $S_{n}$.

In this paper we give combinatorial interpretations for the orthogonality relations of spin characters of $\tilde{S}_{n}$ based on Stembridge's combinatorial reformulation for Morris' rule.

In section 2, we outline the definitions and notation used in this paper. Section 3 reviews the basic properties of a group $\tilde{S}_{n}$ and draw some relations between the irreducible spin characters of $\tilde{S}_{n}$ and symmetric functions. In section 4, we give combinatorial interpretations for the orthogonality relations of spin characters of $\tilde{S}_{n}$.

## 2. Definitions

We use standard notation $\mathbb{P}, \mathbb{Z}, \mathbb{Q}, \mathbb{C}$ for the set of all positive integers, the ring of integers, the field of rational numbers and the field of complex numbers, respectively.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ be a partition of the nonnegative integer $n$, denoted $\lambda \vdash n$ or $|\lambda|=n$, so $\lambda$ is a weakly decreasing sequence of positive integers summing to $n$. We say each term $\lambda_{i}$ is a part of $\lambda$ and $n$ is the weight of $\lambda$. The number of nonzero parts is called the length of $\lambda$ and is written $\ell=\ell(\lambda)$. Let $\mathcal{P}_{n}$ be the set of all partitions of $n$ and $\mathcal{P}$ be the

Combinatorial interpretations of the orthogonality for spin characters of $\tilde{S_{n}} 327$
set of all partitions. We also denote

$$
\begin{aligned}
O P & =\{\mu \in \mathcal{P} \mid \text { every part of } \mu \text { is odd }\} \\
O P_{n} & =\left\{\mu \in \mathcal{P}_{n} \mid \text { every part of } \mu \text { is odd }\right\} \\
D P & =\{\mu \in \mathcal{P} \mid \mu \text { has all distinct parts }\} \\
D P_{n} & =\left\{\mu \in \mathcal{P}_{n} \mid \mu \text { has all distinct parts }\right\}, \\
D P_{n}^{+} & =\left\{\mu \in \mathcal{D} P_{n} \mid n-\ell(\mu) \text { is even }\right\} \\
D P_{n}^{-} & =\left\{\mu \in \mathcal{D} P_{n} \mid n-\ell(\mu) \text { is odd }\right\}
\end{aligned}
$$

We sometimes abbreviate the partition $\lambda$ with the notation $1^{j_{1}} 2^{j_{2}} \ldots$, where $j_{i}$ is the number of parts of size $i$. Sizes which do not appear are omitted and if $j_{i}=1$, then it is not written. Thus, a partition $(5,3,2,2,2,1) \vdash 15$ can be written $12^{3} 35$.

For each $\lambda \in D P$, a shifted diagram $D_{\lambda}^{\prime}$ of shape $\lambda$ is defined by

$$
D_{\lambda}^{\prime}=\left\{(i, j) \in \mathbf{Z}^{2} \mid i \leq j \leq \lambda_{j}+i-1,1 \leq i \leq \ell(\lambda)\right\}
$$

And for $\lambda, \mu \in D P$ with $D_{\mu}^{\prime} \subseteq D_{\lambda}^{\prime}$, a shifted skew diagram $D_{\lambda / \mu}^{\prime}$ is defined as the set-theoretic difference $D_{\lambda}^{\prime} \backslash D_{\mu}^{\prime}$. Figure 2.1 and Figure 2.2 show $D_{\lambda}^{\prime}$ and $D_{\lambda / \mu}^{\prime}$ respectively when $\lambda=(9,7,4,2)$ and $\mu=(5,3)$.


Figure 2.1


Figure 2.2


Figure 2.3

A shifted skew diagram $\theta$ is called a single rim hook if $\theta$ is connected and contains no $2 \times 2$ block of cells. If $\theta$ is a single rim hook, then its head is the upper rightmost cell in $\theta$ and its tail is the lower leftmost cell in $\theta$. See Figure 2.3.

A double rim hook is a shifted skew diagram $\theta$ formed by the union of two single rim hooks both of whose tails are on the main diagonal. If $\theta$ is a double rim hook, we denote by $\mathcal{A}[\theta]$ (resp., $\alpha_{1}[\theta]$ ) the set of diagonals of length two (resp., one). Also let $\beta_{1}[\theta]$ (resp., $\gamma_{1}[\theta]$ ) be a single rim hook in $\theta$ which starts on the upper (resp., lower ) of the two main diagonal cells and ends at the head of $\alpha_{1}[\theta]$. The tail of $\beta_{1}[\theta]$ (resp., $\gamma_{1}[\theta]$ ) is called the first tail (resp., second tail) of $\theta$ and the head of $\beta_{1}[\theta]$ or $\gamma_{1}[\theta]$ (resp., $\gamma_{2}[\theta], \beta_{2}[\theta]$, where $\beta_{2}[\theta]=\theta \backslash \beta_{1}[\theta]$ and $\gamma_{2}[\theta]=\theta \backslash \gamma_{1}[\theta]$ ) is
called the first head (resp., second head, third head) of $\theta$. Hence we have the following descriptions for a double rim hook $\theta$ :

$$
\begin{aligned}
\theta & =\mathcal{A}[\theta] \cup \alpha_{1}[\theta] \\
& =\beta_{1}[\theta] \cup \beta_{2}[\theta] \\
& =\gamma_{1}[\theta] \cup \gamma_{2}[\theta] .
\end{aligned}
$$

A double rim hook is illustrated in Figure 2.4. We write $\mathcal{A}, \alpha_{1}$, etc. for $\mathcal{A}[\theta], \alpha_{1}[\theta]$, etc. when there is no confusion.


Figure 2.4
We will use the term rim hook to mean a single rim hook or a double rim hook.

A shifted rim hook tableau of shape $\lambda \in D P$ and content $\rho=\left(\rho_{1}, \ldots, \rho_{m}\right)$ is defined recursively. If $m=1$, a rim hook with all 1's and shape $\lambda$ is a shifted rim hook tableau. Suppose $P$ of shape $\lambda$ has content $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{m}\right)$ and the cells containing the $m$ 's form a rim hook inside $\lambda$. If the removal of the $m$ 's leaves a shifted rim hook tableau, then $P$ is a shifted rim hook tableau. We define a shifted skew rim hook tableau in a similar way. If $P$ is a shifted rim hook tableau, we write $\kappa_{P}\langle r\rangle$ (or just $\kappa\langle r\rangle$ ) for a rim hook of $P$ containing $r$.

If $\theta$ is a single rim hook then the $\operatorname{rank} r(\theta)$ is one less than the number of rows it occupies and the weight $w(\theta)=(-1)^{r(\theta)}$; if $\theta$ is a double rim hook then the $\operatorname{rank} r(\theta)$ is $|\mathcal{A}[\theta]| / 2+r\left(\alpha_{1}[\theta]\right)$ and the weight $w(\theta)$ is $2(-1)^{r(\theta)}$.

The weight of a shifted rim hook tableau $P, w(P)$, is the product of the weights of its rim hooks. The weight of a shifted skew rim hook tableau is defined in a similar way.


Figure 2.5


Figure 2.6


Figure 2.7

Figure 2.5 shows an example of a shifted rim hook tableau $P$ of shape $(5,4,1)$ and content $(5,1,4)$. Here $r(\kappa\langle 1\rangle)=1, r(\kappa\langle 2\rangle)=0$ and $r(\kappa\langle 3\rangle)=1$. Also $w(\kappa\langle 1\rangle)=-2, w(\kappa\langle 2\rangle)=1$ and $w(\kappa\langle 3\rangle)=-1$. Hence $w(P)=(-2) \cdot(1) \cdot(-1)=2$.

Let $P$ be a shifted rim hook tableau. We denote by $P^{1}$ (resp., $P_{2}$ ) one of the tableaux obtained from $P$ by circling or not circling the first tail(resp., second tail) of each double rim hook in $P$. The $P^{1}$ (resp., $P_{2}$ ) is called a first (resp., second) tail circled rim hook tableau. Similarly $P_{2}^{1}$ is obtained from $P$ by circling or not circling the first tail and second tail of each double rim hook in $P$ and is called a tail circled rim hook tableau. We use the notation $|\cdot|$ to refer to the uncircled version; e.g., $\left|P^{1}\right|=\left|P_{2}\right|=\left|P_{2}^{1}\right|=P$. See Figure 2.6 and Figure 2.7 for examples of first and second tail circled rim hook tableaux, respectively. Figure 2.8 shows tail circled rim hook tableaux $P_{2}^{1}$ when a shifted rim hook tableau $P$ is given.


Figure 2.8
We now define a new weight function $w^{\prime}$ for first or second tail circled rim hook tableaux. If $\tau$ is a rim hook of $P^{1}$ or $P_{2}$, we define $w^{\prime}(\tau)=$ $(-1)^{r(\tau)}$. The weights $w^{\prime}\left(P^{1}\right)$ and $w^{\prime}\left(P_{2}\right)$ are the product of the weights of rim hooks in $P^{1}$ and $P_{2}$, respectively. For a tail circled rim hook tableau $P_{2}^{1}$, we define $w^{\prime \prime}\left(P_{2}^{1}\right)=1$.

For each double rim hook $\tau$ of a rim hook tableau $P$, there are two first circled rim hooks $\tau_{1}, \tau_{2}$ such that $w(\tau)=w^{\prime}\left(\tau_{1}\right)+w^{\prime}\left(\tau_{2}\right)$. This fact implies the following:

Proposition 2.1. Let $\gamma \in O P$. Then we have

$$
\sum_{P} w(P)=\sum_{P^{1}} w^{\prime}\left(P^{1}\right),
$$

where the left-hand sum is over all shifted rim hook tableaux $P$ of shape $\lambda / \mu$ and content $\gamma$, while the right-hand sum is over all shifted first tail circled rim hook tableaux $P^{1}$ of shape $\lambda / \mu$ and content $\gamma$.

We can get the similar identiy using shifted second tail circled rim hook tableaux

## 3. Symmetric functions and irreducible spin characters of $\tilde{S}_{n}$

We consider the ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ of formal power series with integer coefficients in the infinite variables $x_{1}, x_{2}, \cdots$. Note that the symmetric functions form a subring of $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$. Let $\Lambda(x)$, or simply $\Lambda$, be the ring of symmetric functions of $x_{1}, x_{2}, \cdots$. Define $\mathbb{Z}$-modules $\Lambda^{k}$ by $\Lambda^{k}(x)=\Lambda^{k}=\{f \in \Lambda \mid f$ is homogeneous of degree $k\}$. Then we have $\Lambda=\prod_{k \geq 0} \Lambda^{k}$.

Let $r$ be a positive integer. The $r$ th power sum $p_{r}$ is defined by

$$
p_{r}=\sum_{i \geq 1} x_{i}^{r}
$$

By convention, we set $p_{0}=1$ and $p_{r}=0$ for $r<0$. Extend the definition of this symmetric function to all partitions by $p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots$.

We now define a group $\tilde{S}_{n}$ and draw some connections between the irreducible spin characters of $\tilde{S}_{n}$ and symmetric functions.

For $n>1$ let $\tilde{S}_{n}$ be the group generated by $t_{1}, t_{2}, \ldots, t_{n-1},-1$ subject to relations

$$
\begin{gathered}
t_{i}^{2}=-1 \text { for } i=1,2, \ldots, n-1 \\
t_{i} t_{i+1} t_{i}=t_{i+1} t_{i} t_{i+1} \quad \text { for } i=1,2, \ldots, n-2, \\
t_{i} t_{j}=-t_{j} t_{i} \quad \text { for }|i-j|>1(i, j=1,2, \ldots, n-1) .
\end{gathered}
$$

Note that $\left|\tilde{S}_{n}\right|=2 n$ !. Since -1 is a central involution, Schur's lemma implies that an irreducible representation of $\tilde{S}_{n}$ must represent -1 by either the scalar 1 or -1 . The representation of the former type is an ordinary representation of $S_{n}$, while one of the latter type will correspond to a projective representation of $S_{n}$, as we will see later. A representation $T$ of $\tilde{S}_{n}$ is called a spin representation of $\tilde{S}_{n}$ if the group element -1 is represented by scalar -1 , i.e., if $T(-1)=-1$.

To describe the characters of spin representations of $\tilde{S}_{n}$ we consider the structure of the conjugacy classes of $\tilde{S}_{n}$. Let $\theta_{n}: \tilde{S}_{n} \rightarrow S_{n}$ be an epimorphism defined by $t_{i} \mapsto s_{i}$, where $s_{i}$ is an adjacent transposition

Combinatorial interpretations of the orthogonality for spin characters of $\tilde{S_{n}} 331$
$\left(i_{i}+1\right)$ in $S_{n}$. For each partition $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of $n$, we choose a specific element $\sigma_{\mu}$ such that $\theta_{n}\left(\sigma_{\mu}\right)$ is of cycle-type $\mu$ as follows: Define

$$
\sigma_{\mu}=\pi_{1} \pi_{2} \ldots \pi_{\ell}
$$

where $\pi_{j}=t_{a+1} t_{a+2} \ldots t_{a+\mu_{j}-1}\left(a=\sum_{i=1}^{j-1} \mu_{i}\right)$ for $1 \leq j \leq \ell=\ell(\mu)$. For example, if $\mu=(3,3,2) \vdash 8$, then $\sigma_{\mu}=t_{1} t_{2} t_{4} t_{5} t_{7} \in \tilde{S}_{8}$ and $\theta_{8}\left(\sigma_{\mu}\right)=$ (123)(456)(78) $\in S_{8}$.

Since $\operatorname{ker}\left(\theta_{n}\right)=\{ \pm 1\}$, every $\sigma \in \tilde{S}_{n}$ is conjugate to $\sigma_{\mu}$ or $-\sigma_{\mu}$ for some partition $\mu$ of $n$.

Theorem 3.1. (Schur) Let $\mu$ be a partition of $n$. Then the elements $\sigma_{\mu}$ and $-\sigma_{\mu}$ are not conjugate in $\tilde{S}_{n}$ iff either $\mu \in O P_{n}$ or $\mu \in D P_{n}^{-}$.

Proof. See [1] or [7].
Let $\Omega_{\mathbb{Q}}=\prod_{n \geq 0} \Omega_{\mathbb{Q}}^{n}$ denote the graded subring of $\Lambda_{\mathbb{Q}}=\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $1, p_{1}, p_{3}, \ldots$ and let $\Omega=\Lambda \cap \Omega_{\mathbb{Q}}$ denote the $\mathbb{Z}$-coefficient graded subring of $\Omega_{\mathbb{Q}}$. Clearly $\left\{p_{\lambda} \mid \lambda \in O P_{n}\right\}$ forms a basis of $\Omega_{\mathbb{Q}}^{n}$ and $\operatorname{dim}_{\mathbb{Q}} \Omega_{\mathbb{Q}}^{n}=\left|O P_{n}\right|$.

Define an inner product [, ] on $\Omega_{\mathbb{C}}^{n}$ by setting

$$
\left[p_{\lambda}, p_{\mu}\right]=z_{\lambda} 2^{-\ell(\lambda)} \delta_{\lambda \mu} \quad \text { for } \lambda, \mu \in O P_{n},
$$

where

$$
\delta_{\lambda \mu}=\left\{\begin{array}{lc}
1 & \text { if } \lambda=\mu \\
0 & \text { otherwise }
\end{array}\right.
$$

Lemma 3.2. (Mac)

1. $\left\{Q_{\lambda} \mid \lambda \in D P_{n}\right\}$ is a basis of $\Omega_{\mathbb{Q}}^{n}$.
2. $\left[P_{\lambda}, Q_{\mu}\right]=\delta_{\lambda \mu}$,
where $P_{\lambda}$ (resp., $Q_{\lambda}$ ) is the Hall-Littlewood symmetric $P$-function (resp., $Q$-function) corresponding to a partition $\lambda \in D P$.

Proof. See [2].
We now describe the irreducible spin characters of $\tilde{S}_{n}$ using the HallLittlewood symmetric functions $P_{\lambda}$ and $Q_{\lambda}$

Theorem 3.3. (Schur) Define a class function $\varphi^{\lambda}$ for each $\lambda \in D P_{n}^{+}$ by

$$
\varphi^{\lambda}\left(\sigma_{\mu}\right)= \begin{cases}{\left[2^{-\ell(\lambda) / 2} Q_{\lambda}, 2^{\ell(\mu) / 2} p_{\mu}\right]} & \text { if } \mu \in O P_{n} \\ 0 & \text { otherwise }\end{cases}
$$

and define a pair of class functions $\varphi_{ \pm}^{\lambda}$ for each $\lambda \in D P_{n}^{-}$via

$$
\varphi_{ \pm}^{\lambda}\left(\sigma_{\mu}\right)= \begin{cases}\frac{1}{\sqrt{2}}\left[2^{-\ell(\lambda) / 2} Q_{\lambda}, 2^{\ell(\mu) / 2} p_{\mu}\right] & \text { if } \mu \in O P_{n} \\ \pm i^{(n-\ell(\lambda)+1) / 2} \sqrt{\frac{1}{2} z_{\lambda}} & \text { if } \mu=\lambda, \\ 0 & \text { otherwise }\end{cases}
$$

where $z_{\lambda}=\prod_{i \geq 1} i^{m_{i}} m_{i}$ ! if $\lambda=1^{m_{1}} 2^{m_{2}} \cdots$.
Then the class functions $\varphi^{\lambda}\left(\lambda \in D P_{n}^{+}\right)$and $\varphi_{ \pm}^{\lambda}\left(\lambda \in D P_{n}^{-}\right)$are the irreducible spin characters of $\tilde{S}_{n}$.

Proof. See [1] or [7].
Although Theorem 3.3 determines the irreducible spin characters $\varphi^{\lambda}$, it is difficult to use Theorem 3.3 to evaluate $\varphi^{\lambda}\left(\sigma_{\mu}\right)$ explicitly for $\mu \in O P$. But Morris has derived a recurrence for the evaluation of these characters which is similar to the well-known Murnaghan-Nakayama formula for ordinary characters of $S_{n}$.

In 1990 Stembridge[8] gave a combinatorial reformulation for Morris' recurrence using shifted tableaux, rather than the machinery of HallLittlewood functions used by Morris. We now describe Stembridge's interpretation for Morris' rule.

Lemma 3.4. (Stembridge) Let $k$ be an odd number and $|\lambda / \mu|=k$. Then

1. $\left[Q_{\lambda / \mu}, p_{k}\right]=0$ unless $\lambda / \mu$ is a rim hook.
2. $\left[Q_{\lambda / \mu}, p_{k}\right]=(-1)^{r}$ if $\lambda / \mu$ is a single rim hook of rank $r$.
3. $\left[Q_{\lambda / \mu}, p_{k}\right]=2(-1)^{r}$ if $\lambda / \mu$ is a double rim hook of rank $r$.

Proof. See [8].
Theorem 3.5. (Stembridge) For any $\gamma \in O P$, we have

$$
\left[Q_{\lambda / \mu}, p_{\gamma}\right]=\sum_{S} w(S),
$$

where the sum is over all shifted rim hook tableaux $S$ of shape $\lambda / \mu$ and content $\gamma$.

Combinatorial interpretations of the orthogonality for spin characters of $\tilde{S}_{n} 333$
Proof. Since the $P_{\lambda}$ 's and $Q_{\lambda}$ 's are dual bases, we have

$$
p_{r} P_{\mu}=\sum_{\lambda \in D P}\left[p_{r} P_{\mu}, Q_{\lambda}\right] P_{\lambda} \quad \text { for any odd integer } r \text {. }
$$

By iterating this expansion successively for $r=\gamma_{1}, \ldots, \gamma_{\ell}$, we find

$$
\left[p_{\gamma} P_{\mu}, Q_{\lambda}\right]=\sum_{\left\{\lambda^{j}\right\}}\left[p_{\gamma_{1}} P_{\lambda^{0}}, Q_{\lambda^{1}}\right] \cdots\left[p_{\gamma_{\ell}} P_{\lambda^{\ell-1}}, Q_{\lambda^{\ell}}\right],
$$

where $\mu=\lambda^{0}, \lambda=\lambda^{\ell}$. Since $\left[Q_{\lambda / \mu}, P_{\nu}\right]=\left[Q_{\lambda}, P_{\mu} P_{\nu}\right]$ and the $P_{\nu}$ 's span $\Omega_{\mathbf{Q}},\left[Q_{\lambda / \mu}, f\right]=\left[Q_{\lambda}, f P_{\mu}\right]$ for any $f \in \Omega_{\mathbf{Q}}$, and therefore

$$
\left[Q_{\lambda / \mu}, p_{\gamma}\right]=\sum_{\left\{\lambda^{j}\right\}}\left[Q_{\lambda^{1} / \lambda^{0}}, p_{\left.\gamma_{1}\right]}\right] \cdots\left[Q_{\lambda^{\ell} / \lambda^{\ell-1}}, p_{\gamma_{\ell}}\right]
$$

Note that $Q_{\lambda / \mu}=0$ unless $\mu \subseteq \lambda$. Thus the only nonzero contributions to $\left[Q_{\lambda / \mu}, p_{\gamma}\right]$ in this expansion occur when $\lambda^{0} \subseteq \lambda^{1} \subseteq \cdots \subseteq \lambda^{\ell}$ and $\left|\lambda^{i}\right|-\left|\lambda^{i-1}\right|=\gamma_{i}(1 \leq i \leq \ell)$. Hence it suffices to evaluate $\left[Q_{\lambda / \mu}, p_{k}\right]$ for all skew shapes $\lambda / \mu$ of weight $k$ ( $k$ odd), and the description of $\left[Q_{\lambda / \mu}, p_{k}\right]$ in Lemma 3.4 gives a complete proof of Theorem 3.5.

Example 3.6. Consider $\lambda=(6,3,2,1), \gamma=(5,3,3,1)$. There are four shifted rim hook tableaux of shape $\lambda$ and content $\gamma$. See Figure 3.1. Since $w\left(T_{1}\right)=w\left(T_{2}\right)=w\left(T_{3}\right)=-2$ and $w\left(T_{4}\right)=4,\left[Q_{\lambda}, p_{\gamma}\right]=-2$. Therefore Theorem 3.5 implies that

$$
\varphi^{\lambda}\left(\sigma_{\gamma}\right)=\left[Q_{\lambda}, p_{\gamma}\right]=-2
$$

| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
|  | 2 | 2 | 2 |  |
|  |  | 3 | 3 |  |
|  | $T_{1}$ |  | 3 |  |




Figure 3.1

## 4. Combinatorial interpretations of the orthogonality relations for spin characters of $\tilde{S_{n}}$

Recall that there are two kinds of orthogonality relations for characters of a group $G$. See [5] for detail. First we give combinatorial interpretation for the orthogonality relation of the first kind for spin characters of $\tilde{S}_{n}$.

Theorem 4.1. (Orthogonality relation of the first kind) Let $G$ be a group of order $g$. If $\chi$ and $\psi$ are irreducible characters of a group $G$. Then

$$
\frac{1}{g} \sum_{x \in G} \chi(x) \psi\left(x^{-1}\right)=\delta_{\chi \psi}
$$

Using Stembridge's combinatorial interpretation for Morris' rule given in Theorem 3.5, orthogonality relation of the first kind for $\tilde{S}_{n}$ in Theorem 4.1 can be reformulated as follows;

Corollary 4.2. (Orthogonality relation of the first kind for $\tilde{S}_{n}$ ) Let $\lambda, \mu \in D P_{n}$. Then

$$
\sum 2^{\ell(t y p e(\sigma))} w(P) w(Q)=\delta_{\lambda \mu} 2^{\ell(\lambda)} n!
$$

where the sum is over triples $(P, Q, \sigma)$, with $P$ a shifted rim hook tableau of shape $\lambda, Q$ a shifted rim hook tableau of shape $\mu$ and $\sigma \in S_{n}$, which satisfy type $(\sigma) \in O P_{n}$, content $(P)=\operatorname{content}(Q)=\operatorname{content}(\sigma)$.

Given $\lambda \in D P_{n}$, a permutation tableau of shape $\lambda$ is a filling of the shifted diagram $D_{\lambda}^{\prime}$ with positive integers $1,2, \ldots, n$ and a circled permutation tableau is a permutation tableau with main diagonal entry either circled or uncircled. For example,

$$
T=\begin{array}{cccc}
\text { (6) } & 7 & 1 & 3 \\
& 5 & 8 & 4 \\
& & & 7
\end{array}
$$

is a circled permutation tableau of shape $(4,3,1)$.
Let $\sigma \in S_{n}$ and write $\sigma$ in cycle form, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m}$, where the cycles $\sigma_{i}$ are written in increasing order of the largest in the cycle. Recall that content $(\sigma)$ is the sequence $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{m}\right)$, where $\rho_{i}=\left|\sigma_{i}\right|=$ length of the cycle $\sigma_{i}$. If $\sigma \in S_{n}$, then let $\bar{\sigma}$ be a permutation obtained from $\sigma$ in which each cycle of $\sigma$ is either barred or unbarred. If $\sigma=(42)(8371), \bar{\sigma}$ is one of $(42)(8371), \overline{(42)}(8371),(42) \overline{(8371)}$ and $\overline{(42)(8371)}$.

Now let $\lambda, \mu \in D P_{n}$ and let

$$
\begin{aligned}
\pi_{\lambda} & =\text { the set of all circled permutation tableaux of shape } \lambda, \\
\Gamma_{\lambda} & =\left\{\left(P_{2}^{1}, \bar{\sigma}\right)\right\} \\
\Psi_{\lambda \mu}^{+} & =\left\{\left(P^{1}, Q_{2}, \bar{\sigma}\right) \mid w^{\prime}\left(P^{1}\right) w^{\prime}\left(Q_{2}\right)=1\right\}, \\
\Psi_{\lambda \mu}^{-} & =\left\{\left(P^{1}, Q_{2}, \bar{\sigma}\right) \mid w^{\prime}\left(P^{1}\right) w^{\prime}\left(Q_{2}\right)=-1\right\},
\end{aligned}
$$

where $P$ is a shifted rim hook tableau of shape $\lambda, Q$ is a shifted rim hook tableau of shape $\mu, \sigma \in S_{n}$ with type $(\sigma) \in O P_{n}$ and content $(P)=$ $\operatorname{content}(Q)=\operatorname{content}(\sigma)$.

Note that

$$
\begin{aligned}
& \left|\pi_{\lambda}\right|=2^{\ell(\lambda)} n!, \\
& \left|\Gamma_{\lambda}\right|=\sum 2^{\ell(t y p e(\sigma))}\left|P_{2}^{1}\right|=\sum 2^{\ell(t y p e(\sigma))} w^{\prime \prime}\left(P_{2}^{1}\right),
\end{aligned}
$$

where $P$ is a shifted rim hook tableau of shape $\lambda$. Since the map given by $P_{2}^{1} \rightarrow\left(P^{1}, P_{2}\right)$ is clearly a bijection, we get the following theorem from Corollary 4.2.

Theorem 4.3. Let $\lambda, \mu \in D P_{n}$.
(a) If $\lambda \neq \mu$, then there is a bijection between $\Psi_{\lambda \mu}^{+}$and $\Psi_{\lambda \mu}^{-}$.
(b) If $\lambda=\mu$, then there is a bijection between $\Gamma_{\lambda}$ and $\pi_{\lambda}$.

Let's now give combinatorial interpretation for the orthogonality relation of the second kind for spin characters of $\tilde{S_{n}}$.

Theorem 4.4. (Orthogonality relation of the second kind) Let $G$ be a group of order $g$. Let $\chi^{(1)}, \chi^{(2)}, \ldots, \chi^{(k)}$ be all irreducible characters of $G$. Then

$$
\sum_{i=1}^{k} \chi_{\alpha}^{(i)} \overline{\chi_{\beta}^{(i)}}=\frac{g}{h_{\alpha}} \delta_{\alpha \beta},
$$

where $h_{\alpha}$ is the number of elements in the conjugacy class $C_{\alpha}$ of $\alpha$.
Using Schur's spin character formulas described in Theorem 3.3 and Stembridge's combinatorial interpretation for spin characters of $\tilde{S}_{n}$ respectively, orthogonality relation of the second kind for $\tilde{S}_{n}$ can be described in the following ways.

Corollary 4.5. (Orthogonality relation of the second kind for $\tilde{S}_{n}$ ) Let $\mu, \nu \in P_{n}$. Then

$$
\sum_{\lambda \in D P_{n}^{+}} \varphi^{\lambda}\left(\sigma_{\mu}\right) \varphi^{\lambda}\left(\sigma_{\nu}^{-1}\right)+\sum_{\lambda \in D P_{n}^{-}} \varphi_{ \pm}^{\lambda}\left(\sigma_{\mu}\right) \varphi_{ \pm}^{\lambda}\left(\sigma_{\nu}^{-1}\right)=\delta_{\mu \nu} 1^{j_{1}} j_{1}!2^{j_{2}} j_{2}!\cdots,
$$

where $\mu=1^{j_{1}} 2^{j_{2}} \ldots$.
Corollary 4.6. Let $\mu=1^{j_{1}} 2^{j_{2}} \cdots \in O P_{n}$ and $\nu \in O P_{n}$. Then

$$
\sum_{(\lambda, P, Q)} 2^{n-\ell(\lambda)} w(P) w(Q)=\delta_{\mu \nu} 2^{n-\ell(\mu)} 1^{j_{1}} j_{1}!2^{j_{2}} j_{2}!\cdots
$$

where $\lambda \in D P_{n}, P$ is a shifted rim hook tableau of shape $\lambda$ and content $\mu$ and $Q$ is a shifted rim hook tableau of the same shape $\lambda$ and content $\nu$.

We will describe combinatorial objects whose weights represent the both sides of the identity given in Corollary 4.6.
$\mathcal{H}=\left(H_{1}, H_{2}, \ldots, H_{m}\right)$ is said to be a circled hook permutation of content $\rho=k^{m}$, and shape $\left(\tau^{(1)}, \tau^{(2)}, \ldots, \tau^{(m)}\right)$ if the following conditions hold:
(1) each $H_{i}$ is a hook tableau of shape $\tau^{(i)}$,
(2) $\left|\tau^{(i)}\right|=k$ and
(3) for each $i$, all cells of $H_{i}$ except its tail can be circled or uncircled.

Figure 4.1 gives a circled hook permutation of content $5^{5}$.


Figure 4.1
Using shifted first tail circled rim hook tableaux and circled hook permutations defined in the above, Corollary 4.6 implies the following theorem.

Theorem 4.7. There is a bijection between positive pairs $(P, Q)$, where $P$ is a shifted (first tail circled) rim hook tableau of shape $\lambda$ and content $\mu$ and $Q$ is a circled shifted rim hook tableau of the same shape $\lambda$ and content $\nu$, and,
(a) if $\mu \neq \nu$, negative pairs of $(\hat{P}, \hat{Q})$, where $\hat{P}$ is a shifted (first tail circled) rim hook tableau of shape $\hat{\lambda}$ and content $\mu$ and $\hat{Q}$ is a circled shifted rim hook tableau of the same shape $\hat{\lambda}$ and content $\nu$, or,
(b) if $\mu=\nu$, the union of the set of negative pairs of $(\hat{P}, \hat{Q})$, where $\hat{P}$ is a shifted (first tail circled) rim hook tableau of shape $\hat{\lambda}$ and content $\mu$ and $\hat{Q}$ is a circled shifted rim hook tableau of the same shape $\hat{\lambda}$ and content $\nu$, with the set of circled hook permutations of content $\mu$.

It will be very interesting to construct bijections directly described in Theorem 4.3 and Theorem 4.7.

Combinatorial interpretations of the orthogonality for spin characters of $\tilde{S_{n}} 337$

## References

[1] T. Józefiak, Characters of projective representations of symmetric groups, Expo. Math. 7 (1989), 193-247.
[2] I. G. Macdonald, Symetric functions and Hall polynomilas, 2nd edition, Oxford University Press, Oxford, 1995.
[3] A. O. Morris, The spin representation of the symetric group, Canad. J. Math. 17 (1965), 543-549.
[4] B. E. Sagan, Shifted tableaux, Schur $Q$-functions and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), 62-103.
[5] B. E. Sagan, The symmetric group, Springer-Verlag, New York, 2000.
[6] I. Schur, Über die Darstellung der symmetischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew: Math. 131(1911), 155-250.
[7] J. R. Stembridge, Shifted tableaux and projective representations of symmetric groups, Advances in Math. 74 (1989), 87-134.
[8] J. R. Stembridge, On symmetric functions and spin characters of $S_{n}$, Topics in algebra, Banach Center Publ. 26 (1990), part 2, Polish Scientific Publishers, 433-453.
[9] D. E. White, Orthogonality of the characters of $S_{n}$, J. Combin. Theory (A), 40 (1985), 265-275.
[10] D. E. White, A bijection proving orthogonality of the characters of $S_{n}$, Advances in Math. 50 (1983), 160-186.
[11] D. R. Worley, A theory of Shifted Young Tableaux, Ph. D. thesis, M.I.T., 1984.

Jaejin Lee<br>Department of Mathematics<br>Hallym University<br>Chunchon, Korea 200-702<br>E-mail: jjlee@hallym.ac.kr

