THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE

Chang Il Kim and Se Won Park*

Abstract. In this paper, we investigate the solution of the following functional inequality

$$
\|f(x)+f(y)+f(a z), w\| \leq\|f(x+y)-f(-a z), w\|
$$

for some fixed non-zero integer a, and prove the generalized HyersUlam stability of it in non-Archimedean 2-normed spaces.

1. Introduction and preliminaries

The stability problems concerning group homomorphisms were raised by Ulam [18] in 1940, and answered affirmatively for Banach spaces by Hyers [10] in the next year. Rassias [17] attempted to weaken the condition for the bound of the norm of the Cauchy difference as follows

$$
\|f(x)+f(y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\epsilon\|y\|^{p}\right)
$$

and derived Hyer's theorem for the stability of the additive mapping(called the generalized Hyers-Ulam stability of the additive mapping). It should be remarked that a paper of Aoki [1] was published

Received March 18, 2014. Revised June 5, 2014. Accepted June 9, 2014.
2010 Mathematics Subject Classification: 39B72, 39B62, 12 J 25.
Key words and phrases: stability, additive functional inequality, non-Archimedean space.

* Corresponding author.
(c) The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
concerning Hyers' theorem of the additive mapping earlier than the paper of Rassias [17]. In 1994, a generalization of the Rassias theorem was obtained by Gǎvruta as follows [5].

The functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

is called an additive functional equation. In particular, every solution of the additive functional equation is said to be an additive mapping.

In [6], Gilányi showed that if a mapping $f: X \longrightarrow Y$ satisfies the following functional inequality

$$
\begin{equation*}
\left\|2 f(x)+2 f(y)-f\left(x y^{-1}\right)\right\| \leq\|f(x y)\|, \tag{1.2}
\end{equation*}
$$

then f satisfies the Jordan-Von Neumann functional equation

$$
2 f(x)+2 f(y)-f\left(x y^{-1}\right)=f(x y)
$$

Gilányi [7] and Fechner [2] proved the generalized Hyers-Ulam stability of (1.2). Park, Cho, and Han [15] proved the generalized Hyers-Ulam stability of the following functional inequalities:

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\| \leq\|f(x+y+z)\| . \tag{1.3}
\end{equation*}
$$

Hensel [9] has introduced a normed space which does not have the Archimedean property and Moslehian and Rassias [13] proved the generalized Hyers-Ulam stability of the additive functional equation and the quadratic functional equation in non-Archimedean spaces.

A valuation is a function $|\cdot|$ from a field \mathbb{K} to $[0, \infty)$ such that for all $r, s \in \mathbb{K}$, the following conditions hold :
(i) $|r|=0$ if and only if $r=0$,
(ii) $|r s|=|r||s|$, and
(iii) $|r+s| \leq|r|+|s|$.

A field \mathbb{K} endowed with a valuation $|\cdot|$ is called a valuation field. If the condition (iii) in the definition of a valuation is replaced with
(iv) $|r+s| \leq \max \{|r|,|s|\}$,
then the valuation $|\cdot|$ is called a non-Archimedean valuation. If $|\cdot|$ is a non-Archimedean valuation on a filed \mathbb{K}, then clearly, $|-1|=|1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Gähler [3], [4] introduced the concept of 2-normed spaces and Gähler and White [19] introduced the concept of 2-Banach spaces. In 1999
to 2003, Lewandowska published a series of papers on 2-normed sets and generalized 2-normed spaces(see [11] and [12]). Recently, Park [14] investigated the stability ploblems of approximate additive mappings, approximate Jensen mappings and approximate quadratic mappings in 2-Banach spaces.

Definition 1.1. Let X be a linear space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$ with $\operatorname{dim} X>1$. Then a mapping $\|\cdot, \cdot\|: X \times X \longrightarrow[0, \infty)$ is called a non-Archimedean 2-norm on X if it satisfies the following :
(AN1) $\|x, y\|=0$ if and only if x, y are linearly dependent,
(AN2) $\|x, y\|=\|y, x\|$,
(AN3) $\|r x, y\|=|r|\|x, y\|$, and
(AN4) $\|x, y+z\| \leq \max \{\|x, y\|,\|x, z\|\}$
for all $x, y, z \in X$ and all $r \in \mathbb{K}$. In case, $(X,\|\cdot \cdot \cdot\|)$ is called a nonArchimedean 2-normed space.

Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean 2-normed space $(X,\|\cdot, \cdot\|)$. The sequence $\left\{x_{n}\right\}$ is called a Cauchy sequence if, for any $\epsilon>0$, there exists a positive integer k such that $\left\|x_{n}-x_{m}, w\right\| \leq \epsilon$ for all $m, n \geq k$ and all $w \in X$. The sequence $\left\{x_{n}\right\}$ is called convergent to x in $(X,\|\cdot, \cdot\|)$, denoted by $\lim _{n \rightarrow \infty} x_{n}=x$, if for any $\epsilon>0$, there exists a positive integer k such that $\left\|x_{n}-x, w\right\| \leq \epsilon$ for all $n \geq k$ and all $w \in X$. By (AN4), we have

$$
\left\|x_{n}-x_{m}, w\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}, w\right\| \mid m \leq j \leq n-1\right\} \quad(n>m) .
$$

and hence $\left\{x_{n}\right\}$ is a Cauchy sequence in $(X,\|\cdot, \cdot\|)$ if and only if the sequence $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in $(X,\|\cdot, \cdot\|)$.

Let $(X,\|\cdot, \cdot\|)$ be a non-Archimedean 2 -normed space. By (AN2) and (AN4), $\|x, y+z\| \leq\|x, y\|+\|x, z\|$ and $\|x+y, z\| \leq\|x, z\|+\|y, z\|$. Hence $\|\cdot, \cdot\|$ is continuous in each component and so using these, we have the following lemma :

Lemma 1.2. For any convergent sequence $\left\{x_{n}\right\}$ in a non-Archimedean 2 -normed space $(X,\|\cdot, \cdot\|)$,

$$
\lim _{n \rightarrow \infty}\left\|x_{n}, w\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, w\right\| .
$$

for all $w \in Y$.
A non-Archimedean 2-normed space in which every Cauchy sequence is a convergent sequence is called a non-Archimedean 2-Banach
space. Recently, the generalized Hyers-Ulam stability on some nonArchimedean Banach spaces was proved([8], [16]).

In this paper, we investigate the solution of the following functional inequality

$$
\begin{equation*}
\|f(x)+f(y)+f(a z), w\| \leq\|f(x+y)-f(-a z), w\| \tag{1.4}
\end{equation*}
$$

for some fixed non-zero integer a, and prove the generalized Hyers-Ulam stability of it in non-Archimedean 2-Banach spaces.

2. Solutions and stability of (1.4)

In this section, let X be a non-Archimedean 2-normed space with $\operatorname{dim} X>1$ and Y a non-Archimedean 2-Banach space with $\operatorname{dim} Y>1$. Note that since $\operatorname{dim} X>1,\|x, y\|=0$ for all $y \in X$ if and only if $x=0$ and that by (AN1), $\|x, 0\|=0$ for all $x \in X$. Using these, we have the following theorem.

Theorem 2.1. A mapping $f: X \longrightarrow Y$ saisfies (1.4) if and only if f is an additive mapping.

Proof. Suppose that f satisfies (1.4). Setting $x=y=z=0$ in (1.4), we have $\|3 f(0), w\| \leq\|0, w\|=0$ for all $w \in Y$ and so $\|3 f(0), w\|=0$ for all $w \in Y$. Hence we have

$$
\begin{equation*}
f(0)=0 . \tag{2.1}
\end{equation*}
$$

Putting $y=-x$ and $z=0$ in (1.4), we have $\|f(x)+f(-x), w\| \leq\|0, w\|$ for all $w \in Y$ and so $\|f(x)+f(-x), w\|=0$ for all $w \in Y$. Thus we have

$$
\begin{equation*}
f(-x)=-f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$. Replacing x, y, z by $-a x-a y, a x, y$ in (1.4) respectively, by (2.2), we have
$\|f(-a x-a y)+f(a x)+f(a y), w\| \leq\|f(-a y)-f(-a y), w\|=\|0, w\|=0$
for all $x, y \in X$ and $w \in Y$. Hence by (2.2) and (AN1), we have

$$
f(a x+a y)=f(a x)+f(a y)
$$

for all $x, y \in X$ and since $a \neq 0, f$ is additive.
Suppose that f is additive. Since f is an odd mapping, we have

$$
\|f(x)+f(y)+f(a z), w\|=\|f(x+y)-f(-a z), w\|
$$

for all $x, y, z \in X$ and $w \in Y$ and so f satisfies (1.4).
Now, we will prove the generalized Hyers-Ulam stability of (1.4) in non-Archimedean 2-Banach spaces.

Theorem 2.2. Assume that $\phi: X^{3} \longrightarrow[0, \infty)$ is a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi\left((-2)^{n} x,(-2)^{n} y,(-2)^{n} z\right)}{|2|^{n}}=0 \tag{2.4}
\end{equation*}
$$

for all $x, y, z \in X$ and the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{k} x,(-2)^{k} x,(-2)^{k+1} \frac{x}{a}\right)}{|2|^{k-1}} \right\rvert\, 0 \leq k \leq n-1\right\} \tag{2.5}
\end{equation*}
$$

exsits for all $x \in X$. Let $f: X \longrightarrow Y$ be a mapping such that $f(0)=0$ and
(2.6) $\|f(x)+f(y)+f(a z), w\| \leq\|f(x+y)-f(-a z), w\|+\phi(x, y, z)$.
for all $x, y, z \in X$ and $w \in Y$. Then there exists an additive mapping $A: X \longrightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-A(x), w\| \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{k} x,(-2)^{k} x,(-2)^{k+1} \frac{x}{a}\right)}{|2|^{k+1}} \right\rvert\, 0 \leq k \leq n-1\right\} \tag{2.7}
\end{align*}
$$

for all $x \in X$ and $w \in Y$. Moreover, if $\phi: X^{3} \longrightarrow[0, \infty)$ satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{i} x,(-2)^{i} x,(-2)^{i+1} \frac{x}{a}\right)}{|2|^{i}} \right\rvert\, k \leq i \leq k+n-1\right\}=0 \tag{2.8}
\end{equation*}
$$

for all $x \in X$, then A is a unique additive mapping satisfying (2.7).
Proof. Replacing x, y, z by $(-2)^{n} x,(-2)^{n} x,(-2)^{n+1} \frac{x}{a}$ in (2.6), respectively, and dividing (2.6) by $|2|^{n+1}$, we have

$$
\left\|\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}-\frac{f\left((-2)^{n+1} x\right)}{(-2)^{n+1}}, w\right\| \leq \frac{1}{|2|} \cdot \frac{\phi\left((-2)^{n} x,(-2)^{n} x,(-2)^{n} \cdot \frac{-2 x}{a}\right)}{|2|^{n}}
$$

for all $x \in X, w \in Y$, and all $n \in \mathbb{N}$. By (2.4), $\left\{\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}\right\}$ is a Cauchy sequence in Y for all $x \in X$ and since Y is a non-Archimedean 2-Banach space, there is a function $A: X \longrightarrow Y$ such that

$$
A(x)=\lim _{n \rightarrow \infty} \frac{f\left((-2)^{n} x\right)}{(-2)^{n}}
$$

for all $x \in X$. Moreover for $0 \leq m<n$, by (AN4), we have

$$
\begin{align*}
& \left\|\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}-\frac{f\left((-2)^{m} x\right)}{(-2)^{m}}, w\right\| \\
\leq & \max \left\{\left.\frac{\phi\left((-2)^{k} x,(-2)^{k} x,(-2)^{k+1} \frac{x}{a}\right)}{|2|^{k+1}} \right\rvert\, m \leq k \leq n-1\right\} \tag{2.9}
\end{align*}
$$

for all $x \in X$ and $w \in Y$. Replacing x, y, z by $(-2)^{n} x,(-2)^{n} y,(-2)^{n} z$ in (2.6), respectively, and dividing (2.6) by $|2|^{n}$, by (AN3), we have

$$
\begin{align*}
& \left\|\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}+\frac{f\left((-2)^{n} y\right)}{(-2)^{n}}+\frac{f\left((-2)^{n} a z\right)}{(-2)^{n}}, w\right\| \tag{2.10}\\
\leq & \left\|\frac{f\left((-2)^{n}(x+y)\right)}{(-2)^{n}}-\frac{f\left(-(-2)^{n} a z\right)}{(-2)^{n}}, w\right\|+\frac{\phi\left((-2)^{n} x,(-2)^{n} y,(-2)^{n} z\right)}{|2|^{n}}
\end{align*}
$$

for all $x \in X$ and all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (2.10), by Lemma 1.2 and (2.4), we have

$$
\|A(x)+A(y)+A(a z), w\| \leq\|A(x+y)-A(-a z), w\|
$$

for all $x, y, z \in X$ and $w \in Y$. By Theorem 2.1, A is additive and by (2.5) and (2.9), we have (2.7).

Suppose that (2.8) holds. Now, we show the uniqueness of A. Let A_{0} be an additive mapping with (2.7). Then for any postive integer n, $2^{n} A(x)=A\left(2^{n} x\right)$ and $2^{n} A_{0}(x)=A_{0}\left(2^{n} x\right)$ for all $x \in X$. Hence by (2.7),
(AN3) and (AN4), we have

$$
\begin{aligned}
& \left\|A(x)-A_{0}(x), w\right\| \\
= & \frac{\left\|A\left((-2)^{k} x\right)-A_{0}\left((-2)^{k} x\right), w\right\|}{|2|^{k}} \\
\leq & \max \left\{\frac{\left\|A\left((-2)^{k} x\right)-f\left((-2)^{k} x\right), w\right\|}{|2|^{k}}, \frac{\left\|A_{0}\left((-2)^{k} x\right)-f\left((-2)^{k} x\right), w\right\|}{|2|^{k}}\right\} \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{i+k} x,(-2)^{i+k} x,(-2)^{i+k+1} \frac{x}{a}\right)}{|2|^{i+k+1}} \right\rvert\, 0 \leq i \leq n-1\right\} \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\phi\left((-2)^{i} x,(-2)^{i} x,(-2)^{i+1} \frac{x}{a}\right)}{|2|^{i+1}} \right\rvert\, k \leq i \leq k+n-1\right\}
\end{aligned}
$$

for all $x \in X, w \in Y$, and all $k \in \mathbb{N}$. Hence, letting $k \rightarrow \infty$ in the above inequality, by (2.8), we have

$$
A(x)=A_{0}(x)
$$

for all $x \in X$.
Related with Theorem 2.2, we can also have the following theorem. And the proof is similar to that of Theorem 2.2.

Theorem 2.3. Assume that $\phi: X^{3} \longrightarrow[0, \infty)$ is a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \phi\left(\frac{x}{(-2)^{n}}, \frac{y}{(-2)^{n}}, \frac{z}{(-2)^{n}}\right)=0 \tag{2.11}
\end{equation*}
$$

for all $x, y, z \in X$ and for any $x \in X$, the limit

$$
\lim _{n \rightarrow \infty} \max \left\{\left.|2|^{k-1} \phi\left(\frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k-1} a}\right) \right\rvert\, 0 \leq k \leq n-1\right\}
$$

exsits. Let $f: X \longrightarrow Y$ be a mapping satisfying (2.6). Then there exists an additive mapping $A: X \longrightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x), w\| \\
\leq & \lim _{n \rightarrow \infty} \max \left\{\left.|2|^{k-1} \phi\left(\frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k-1} a}\right) \right\rvert\, 0 \leq k \leq n-1\right\}
\end{aligned}
$$

for all $x \in X$ and $w \in Y$. Moreover, if $\phi: X^{3} \longrightarrow[0, \infty)$ satisfies

$$
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.|2|^{i-1} \phi\left(\frac{x}{(-2)^{i}}, \frac{x}{(-2)^{i}}, \frac{x}{(-2)^{i} a}\right) \right\rvert\, k \leq i \leq k+n-1\right\}=0
$$

for all $x \in X$, then A is a unique additive mapping satisfying (2.7).
Proof. Replacing x, y, z by $\frac{x}{(-2)^{n}}, \frac{x}{(-2)^{n}}, \frac{x}{(-2)^{n-1} a}$ in (2.6), respectively and multiplying (2.6) by $|2|^{n-1}$, since $f(0)=0$, by (AN3), we have

$$
\begin{aligned}
& \left\|(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)-(-2)^{n-1} f\left(\frac{x}{(-2)^{n-1}}\right), w\right\| \\
& \quad \leq|2|^{n-1} \phi\left(\frac{x}{(-2)^{n}}, \frac{x}{(-2)^{n}}, \frac{x}{(-2)^{n-1} a}\right)
\end{aligned}
$$

for all $x \in X, w \in Y$, and all $n \in \mathbb{N}$. By (2.11), $\left\{(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)\right\}$ is a Cauchy sequence in Y. Since Y is a non-Archimedean 2-Banach space, there is a function $A: X \longrightarrow Y$ such that

$$
A(x)=\lim _{n \rightarrow \infty}(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)
$$

for all $x \in X$ and $w \in Y$. Further for $0 \leq m<n$, we have

$$
\begin{align*}
& \left\|(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)-(-2)^{m} f\left(\frac{x}{(-2)^{m}}\right), w\right\| \\
\leq & \max \left\{\left.|2|^{k-1} \phi\left(\frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k}}, \frac{x}{(-2)^{k-1} a}\right) \right\rvert\, m \leq k \leq n-1\right\} \tag{2.12}
\end{align*}
$$

for all $x \in X$ and $w \in Y$. The rest of proof is similar to the proof of Theorem 2.2.

As an example of $\phi(x, y, z)$ in Theorem 2.2 and Theorem 2.3, we can take $\phi(x, y, z)=\epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for some positive real numbers ϵ and p. Then we can formulate the following corollary :

Corollary 2.4. Let X be a non-Archimedean 2-normed space with $\operatorname{dim} X>1$ and Y a non-Archimedean 2-Banach space with $\operatorname{dim} Y>1$. Let $f: X \longrightarrow Y$ be a mapping such that

$$
\begin{aligned}
& \|f(x)+f(y)+f(a z), w\| \\
\leq & \|f(x+y)-f(-a z), w\|+\epsilon\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in X, w \in Y$, and some positive real numbesr ϵ, p with $p \neq 1$. Suppose that $|2|<1$. Then there exists a unique additive mapping $A: X \longrightarrow Y$ such that A satifies (1.4) and

$$
\|A(x)-f(x), w\| \leq \frac{\epsilon\left(2|a|^{p}+|2|^{p}\right)}{|2 a|^{p}}\|x\|^{p}
$$

for all $x \in X$ and all $w \in Y$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan. 2 (1950), 64-66.
[2] W. Fechner, Stability of a functional inequalty associated with the Jordan-Von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[3] S. Gähler, 2-metrische Rume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115-148.
[4] S. Gähler, Lineare 2-normierte Rumen, Math. Nachr. 28 (1964), 1-43.
[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias of approximatel additive mappings, J. Math. Anal. 184 (1994), 431-436.
[6] A. Gil'anyi, Eine Parallelogrammgleichung "aquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
[7] A. Gil'anyi, On a problem by K. Nikoden, Math. Inequal. Appl. 5 (2002), 701710.
[8] E. M. Gordji, M. B. Ghaemi, Y. Cho, and H. Majani, A general system of Euler-Lagrange-type quadratic functional equations in Menger Probabilistic nonArchimedean spaces, Abst. Appl. Anal. 2011 (2011).
[9] K. Hensel, ber eine neue Begrndung der Theorie der algebraischen Zahlen, Jahresber, Dtsch. Math.-Ver. 6 (1897), 83-88.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[11] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42 (1999), 353-368.
[12] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Mat. 39 (2004), 301-312.
[13] M. S. Moslehian and T. H. Rassias, Stability of functional equations in nonArchimedean spaces, Applicable Anal. Discrete Math. 1 (2007), 325-334.
[14] W. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), 193-202.
[15] C. Park, Y. Cho, and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. (2007).
[16] C. Park, M. E. Gordji, M. B. Ghaemi and H. Majani, Fixed points and approximately octic mappings in non-Archimedean 2-normed spaces, J. Inequal. Appl. (2012).
[17] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297-300.
[18] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York; 1964.
[19] A. White, 2-Banach spaces, Math. Nachr. 42 (1969), 43-60.

Chang Il Kim
Department of Mathematics Education
Dankook University
Yongin 448-701, Korea
E-mail: kci206@hanmail.net
Se Won Park
Department of Liberal arts and Science
Shingyeong University
Hwaseong 445-741, Korea
E-mail: sewpark1079@naver.com

