THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE

CHANG IL KIM AND SE WON PARK*

ABSTRACT. In this paper, we investigate the solution of the following functional inequality

$$||f(x) + f(y) + f(az), w|| \le ||f(x+y) - f(-az), w||$$

for some fixed non-zero integer a, and prove the generalized Hyers-Ulam stability of it in non-Archimedean 2-normed spaces.

1. Introduction and preliminaries

The stability problems concerning group homomorphisms were raised by Ulam [18] in 1940, and answered affirmatively for Banach spaces by Hyers [10] in the next year. Rassias [17] attempted to weaken the condition for the bound of the norm of the Cauchy difference as follows

$$||f(x) + f(y) - f(x) - f(y)|| \le \epsilon(||x||^p + \epsilon||y||^p)$$

and derived Hyer's theorem for the stability of the additive mapping (called the generalized Hyers-Ulam stability of the additive mapping). It should be remarked that a paper of Aoki [1] was published

Received March 18, 2014. Revised June 5, 2014. Accepted June 9, 2014. 2010 Mathematics Subject Classification: 39B72, 39B62, 12J25.

Key words and phrases: stability, additive functional inequality, non-Archimedean space.

^{*} Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

concerning Hyers' theorem of the additive mapping earlier than the paper of Rassias [17]. In 1994, a generalization of the Rassias theorem was obtained by Găvruta as follows [5].

The functional equation

(1.1)
$$f(x+y) = f(x) + f(y)$$

is called an additive functional equation. In particular, every solution of the additive functional equation is said to be an additive mapping.

In [6], Gilányi showed that if a mapping $f: X \longrightarrow Y$ satisfies the following functional inequality

$$(1.2) ||2f(x) + 2f(y) - f(xy^{-1})|| \le ||f(xy)||,$$

then f satisfies the Jordan-Von Neumann functional equation

$$2f(x) + 2f(y) - f(xy^{-1}) = f(xy).$$

Gilányi [7] and Fechner [2] proved the generalized Hyers-Ulam stability of (1.2). Park, Cho, and Han [15] proved the generalized Hyers-Ulam stability of the following functional inequalities:

$$(1.3) ||f(x) + f(y) + f(z)|| \le ||f(x+y+z)||.$$

Hensel [9] has introduced a normed space which does not have the Archimedean property and Moslehian and Rassias [13] proved the generalized Hyers-Ulam stability of the additive functional equation and the quadratic functional equation in non-Archimedean spaces.

A valuation is a function $|\cdot|$ from a field \mathbb{K} to $[0, \infty)$ such that for all $r, s \in \mathbb{K}$, the following conditions hold:

- (i) |r| = 0 if and only if r = 0,
- (ii) |rs| = |r||s|, and
- (iii) $|r+s| \le |r| + |s|$.

A field \mathbb{K} endowed with a valuation $|\cdot|$ is called a valuation field. If the condition (iii) in the definition of a valuation is replaced with

(iv)
$$|r + s| \le \max\{|r|, |s|\},$$

then the valuation $|\cdot|$ is called a non-Archimedean valuation. If $|\cdot|$ is a non-Archimedean valuation on a filed \mathbb{K} , then clearly, |-1| = |1| = 1 and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Gähler [3], [4] introduced the concept of 2-normed spaces and Gähler and White [19] introduced the concept of 2-Banach spaces. In 1999

to 2003, Lewandowska published a series of papers on 2-normed sets and generalized 2-normed spaces(see [11] and [12]). Recently, Park [14] investigated the stability ploblems of approximate additive mappings, approximate Jensen mappings and approximate quadratic mappings in 2-Banach spaces.

DEFINITION 1.1. Let X be a linear space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$ with dim X>1. Then a mapping $\|\cdot,\cdot\|:X\times X\longrightarrow [0,\infty)$ is called a non-Archimedean 2-norm on X if it satisfies the following :

(AN1) ||x,y|| = 0 if and only if x,y are linearly dependent,

(AN2) ||x,y|| = ||y,x||,

(AN3) ||rx, y|| = |r|||x, y||, and

(AN4) $||x, y + z|| \le \max\{||x, y||, ||x, z||\}$

for all $x, y, z \in X$ and all $r \in \mathbb{K}$. In case, $(X, \|\cdot, \cdot\|)$ is called a non-Archimedean 2-normed space.

Let $\{x_n\}$ be a sequence in a non-Archimedean 2-normed space $(X, \|\cdot, \cdot\|)$. The sequence $\{x_n\}$ is called a Cauchy sequence if, for any $\epsilon > 0$, there exists a positive integer k such that $\|x_n - x_m, w\| \le \epsilon$ for all $m, n \ge k$ and all $w \in X$. The sequence $\{x_n\}$ is called convergent to x in $(X, \|\cdot, \cdot\|)$, denoted by $\lim_{n\to\infty} x_n = x$, if for any $\epsilon > 0$, there exists a positive integer k such that $\|x_n - x, w\| \le \epsilon$ for all $n \ge k$ and all $w \in X$. By (AN4), we have

$$||x_n - x_m, w|| \le max\{||x_{j+1} - x_j, w|| \mid m \le j \le n - 1\} \quad (n > m).$$

and hence $\{x_n\}$ is a Cauchy sequence in $(X, \|\cdot, \cdot\|)$ if and only if the sequence $\{x_{n+1} - x_n\}$ converges to zero in $(X, \|\cdot, \cdot\|)$.

Let $(X, \|\cdot, \cdot\|)$ be a non-Archimedean 2-normed space. By (AN2) and (AN4), $\|x, y + z\| \le \|x, y\| + \|x, z\|$ and $\|x + y, z\| \le \|x, z\| + \|y, z\|$. Hence $\|\cdot, \cdot\|$ is continuous in each component and so using these, we have the following lemma :

LEMMA 1.2. For any convergent sequence $\{x_n\}$ in a non-Archimedean 2-normed space $(X, \|\cdot, \cdot\|)$,

$$\lim_{n \to \infty} ||x_n, w|| = ||\lim_{n \to \infty} x_n, w||.$$

for all $w \in Y$.

A non-Archimedean 2-normed space in which every Cauchy sequence is a convergent sequence is called a non-Archimedean 2-Banach

space. Recently, the generalized Hyers-Ulam stability on some non-Archimedean Banach spaces was proved [8], [16]).

In this paper, we investigate the solution of the following functional inequality

$$(1.4) ||f(x) + f(y) + f(az), w|| \le ||f(x+y) - f(-az), w||$$

for some fixed non-zero integer a, and prove the generalized Hyers-Ulam stability of it in non-Archimedean 2-Banach spaces.

2. Solutions and stability of (1.4)

In this section, let X be a non-Archimedean 2-normed space with $\dim X > 1$ and Y a non-Archimedean 2-Banach space with $\dim Y > 1$. Note that since $\dim X > 1$, $\|x,y\| = 0$ for all $y \in X$ if and only if x = 0 and that by (AN1), $\|x,0\| = 0$ for all $x \in X$. Using these, we have the following theorem.

THEOREM 2.1. A mapping $f: X \longrightarrow Y$ satisfies (1.4) if and only if f is an additive mapping.

Proof. Suppose that f satisfies (1.4). Setting x = y = z = 0 in (1.4), we have $||3f(0), w|| \le ||0, w|| = 0$ for all $w \in Y$ and so ||3f(0), w|| = 0 for all $w \in Y$. Hence we have

$$(2.1) f(0) = 0.$$

Putting y = -x and z = 0 in (1.4), we have $||f(x) + f(-x), w|| \le ||0, w||$ for all $w \in Y$ and so ||f(x) + f(-x), w|| = 0 for all $w \in Y$. Thus we have

$$(2.2) f(-x) = -f(x)$$

for all $x \in X$. Replacing x, y, z by -ax - ay, ax, y in (1.4) respectively, by (2.2), we have

(2.3)
$$||f(-ax-ay)+f(ax)+f(ay),w|| \le ||f(-ay)-f(-ay),w|| = ||0,w|| = 0$$
 for all $x,y \in X$ and $w \in Y$. Hence by (2.2) and (AN1), we have

$$f(ax + ay) = f(ax) + f(ay)$$

for all $x, y \in X$ and since $a \neq 0$, f is additive.

Suppose that f is additive. Since f is an odd mapping, we have

$$\|f(x)+f(y)+f(az),w\|=\|f(x+y)-f(-az),w\|$$
 for all $x,y,z\in X$ and $w\in Y$ and so f satisfies (1.4). \Box

Now, we will prove the generalized Hyers-Ulam stability of (1.4) in non-Archimedean 2-Banach spaces.

THEOREM 2.2. Assume that $\phi: X^3 \longrightarrow [0, \infty)$ is a function such that

(2.4)
$$\lim_{n \to \infty} \frac{\phi((-2)^n x, (-2)^n y, (-2)^n z)}{|2|^n} = 0$$

for all $x, y, z \in X$ and the limit

(2.5)
$$\lim_{n \to \infty} \max \left\{ \frac{\phi((-2)^k x, (-2)^k x, (-2)^{k+1} \frac{x}{a})}{|2|^{k-1}} \mid 0 \le k \le n-1 \right\}$$

exsits for all $x \in X$. Let $f: X \longrightarrow Y$ be a mapping such that f(0) = 0 and

$$(2.6) ||f(x) + f(y) + f(az), w|| \le ||f(x+y) - f(-az), w|| + \phi(x, y, z).$$

for all $x, y, z \in X$ and $w \in Y$. Then there exists an additive mapping $A: X \longrightarrow Y$ such that

(2.7)
$$||f(x) - A(x), w||$$

$$\leq \lim_{n \to \infty} \max \{ \frac{\phi((-2)^k x, (-2)^k x, (-2)^{k+1} \frac{x}{a})}{|2|^{k+1}} \mid 0 \leq k \leq n-1 \}$$

for all $x \in X$ and $w \in Y$. Moreover, if $\phi: X^3 \longrightarrow [0, \infty)$ satisfies

(2.8)
$$\lim_{k \to \infty} \lim_{n \to \infty} \max \{ \frac{\phi((-2)^i x, (-2)^i x, (-2)^{i+1} \frac{x}{a})}{|2|^i} \mid k \le i \le k+n-1 \} = 0$$

for all $x \in X$, then A is a unique additive mapping satisfying (2.7).

Proof. Replacing x, y, z by $(-2)^n x$, $(-2)^n x$, $(-2)^{n+1} \frac{x}{a}$ in (2.6), respectively, and dividing (2.6) by $|2|^{n+1}$, we have

$$\left\| \frac{f((-2)^n x)}{(-2)^n} - \frac{f((-2)^{n+1} x)}{(-2)^{n+1}}, w \right\| \le \frac{1}{|2|} \cdot \frac{\phi((-2)^n x, (-2)^n x, (-2)^n \cdot \frac{-2x}{a})}{|2|^n}$$

for all $x \in X$, $w \in Y$, and all $n \in \mathbb{N}$. By (2.4), $\{\frac{f((-2)^n x)}{(-2)^n}\}$ is a Cauchy sequence in Y for all $x \in X$ and since Y is a non-Archimedean 2-Banach space, there is a function $A: X \longrightarrow Y$ such that

$$A(x) = \lim_{n \to \infty} \frac{f((-2)^n x)}{(-2)^n}$$

for all $x \in X$. Moreover for $0 \le m < n$, by (AN4), we have

(2.9)
$$\|\frac{f((-2)^n x)}{(-2)^n} - \frac{f((-2)^m x)}{(-2)^m}, w\|$$

$$\leq \max\{\frac{\phi((-2)^k x, (-2)^k x, (-2)^{k+1} \frac{x}{a})}{|2|^{k+1}} \mid m \leq k \leq n-1\}$$

for all $x \in X$ and $w \in Y$. Replacing x, y, z by $(-2)^n x$, $(-2)^n y$, $(-2)^n z$ in (2.6), respectively, and dividing (2.6) by $|2|^n$, by (AN3), we have

for all $x \in X$ and all $n \in \mathbb{N}$. Letting $n \to \infty$ in (2.10), by Lemma 1.2 and (2.4), we have

$$||A(x) + A(y) + A(az), w|| \le ||A(x+y) - A(-az), w||$$

for all $x, y, z \in X$ and $w \in Y$. By Theorem 2.1, A is additive and by (2.5) and (2.9), we have (2.7).

Suppose that (2.8) holds. Now, we show the uniqueness of A. Let A_0 be an additive mapping with (2.7). Then for any postive integer n, $2^n A(x) = A(2^n x)$ and $2^n A_0(x) = A_0(2^n x)$ for all $x \in X$. Hence by (2.7),

$$\begin{aligned} &(\text{AN3}) \text{ and } (\text{AN4}), \text{ we have} \\ &\|A(x) - A_0(x), w\| \\ &= \frac{\|A((-2)^k x) - A_0((-2)^k x), w\|}{|2|^k} \\ &\leq \max\{\frac{\|A((-2)^k x) - f((-2)^k x), w\|}{|2|^k}, \frac{\|A_0((-2)^k x) - f((-2)^k x), w\|}{|2|^k}\} \\ &\leq \lim_{n \to \infty} \max\{\frac{\phi((-2)^{i+k} x, (-2)^{i+k} x, (-2)^{i+k+1} \frac{x}{a})}{|2|^{i+k+1}} \ | \ 0 \leq i \leq n-1\} \\ &\leq \lim_{n \to \infty} \max\{\frac{\phi((-2)^i x, (-2)^i x, (-2)^{i+1} \frac{x}{a})}{|2|^{i+1}} \ | \ k \leq i \leq k+n-1\} \end{aligned}$$

for all $x \in X$, $w \in Y$, and all $k \in \mathbb{N}$. Hence, letting $k \to \infty$ in the above inequality, by (2.8), we have

$$A(x) = A_0(x)$$

for all $x \in X$.

Related with Theorem 2.2, we can also have the following theorem. And the proof is similar to that of Theorem 2.2.

THEOREM 2.3. Assume that $\phi: X^3 \longrightarrow [0, \infty)$ is a function such that

(2.11)
$$\lim_{n \to \infty} |2|^n \phi(\frac{x}{(-2)^n}, \frac{y}{(-2)^n}, \frac{z}{(-2)^n}) = 0$$

for all $x, y, z \in X$ and for any $x \in X$, the limit

$$\lim_{n \to \infty} \max\{|2|^{k-1} \phi(\frac{x}{(-2)^k}, \frac{x}{(-2)^k}, \frac{x}{(-2)^{k-1}a}) \mid 0 \le k \le n-1\}$$

exsits. Let $f: X \longrightarrow Y$ be a mapping satisfying (2.6). Then there exists an additive mapping $A: X \longrightarrow Y$ such that

$$||f(x) - A(x), w|| \le \lim_{n \to \infty} \max\{|2|^{k-1}\phi(\frac{x}{(-2)^k}, \frac{x}{(-2)^k}, \frac{x}{(-2)^{k-1}a}) \mid 0 \le k \le n-1\}$$

for all $x \in X$ and $w \in Y$. Moreover, if $\phi: X^3 \longrightarrow [0, \infty)$ satisfies

$$\lim_{k \to \infty} \lim_{n \to \infty} \max\{|2|^{i-1} \phi(\frac{x}{(-2)^i}, \frac{x}{(-2)^i}, \frac{x}{(-2)^i a}) \ | \ k \le i \le k+n-1\} = 0$$

for all $x \in X$, then A is a unique additive mapping satisfying (2.7).

Proof. Replacing x, y, z by $\frac{x}{(-2)^n}, \frac{x}{(-2)^n}, \frac{x}{(-2)^{n-1}a}$ in (2.6), respectively and multiplying (2.6) by $|2|^{n-1}$, since f(0) = 0, by (AN3), we have

$$\|(-2)^n f(\frac{x}{(-2)^n}) - (-2)^{n-1} f(\frac{x}{(-2)^{n-1}}), w\|$$

$$\leq |2|^{n-1} \phi(\frac{x}{(-2)^n}, \frac{x}{(-2)^n}, \frac{x}{(-2)^{n-1}a})$$

for all $x \in X$, $w \in Y$, and all $n \in \mathbb{N}$. By (2.11), $\{(-2)^n f(\frac{x}{(-2)^n})\}$ is a Cauchy sequence in Y. Since Y is a non-Archimedean 2-Banach space, there is a function $A: X \longrightarrow Y$ such that

$$A(x) = \lim_{n \to \infty} (-2)^n f(\frac{x}{(-2)^n})$$

for all $x \in X$ and $w \in Y$. Further for $0 \le m < n$, we have

(2.12)
$$\|(-2)^n f(\frac{x}{(-2)^n}) - (-2)^m f(\frac{x}{(-2)^m}), w\|$$

$$\leq \max\{|2|^{k-1} \phi(\frac{x}{(-2)^k}, \frac{x}{(-2)^k}, \frac{x}{(-2)^{k-1}a}) \mid m \leq k \leq n-1\}$$

for all $x \in X$ and $w \in Y$. The rest of proof is similar to the proof of Theorem 2.2.

As an example of $\phi(x, y, z)$ in Theorem 2.2 and Theorem 2.3, we can take $\phi(x, y, z) = \epsilon(\|x\|^p + \|y\|^p + \|z\|^p)$ for some positive real numbers ϵ and p. Then we can formulate the following corollary:

COROLLARY 2.4. Let X be a non-Archimedean 2-normed space with $\dim X > 1$ and Y a non-Archimedean 2-Banach space with $\dim Y > 1$. Let $f: X \longrightarrow Y$ be a mapping such that

$$||f(x) + f(y) + f(az), w||$$

$$\leq ||f(x+y) - f(-az), w|| + \epsilon(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in X$, $w \in Y$, and some positive real numbers ϵ, p with $p \neq 1$. Suppose that |2| < 1. Then there exists a unique additive mapping $A: X \longrightarrow Y$ such that A satisfies (1.4) and

$$||A(x) - f(x), w|| \le \frac{\epsilon(2|a|^p + |2|^p)}{|2a|^p} ||x||^p$$

for all $x \in X$ and all $w \in Y$.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan. 2 (1950), 64–66.
- [2] W. Fechner, Stability of a functional inequalty associated with the Jordan-Von Neumann functional equation, Aequationes Math. **71** (2006), 149–161.
- [3] S. Gähler, 2-metrische Rume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
- [4] S. Gähler, Lineare 2-normierte Rumen, Math. Nachr. 28 (1964), 1-43.
- [5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias of approximatel additive mappings, J. Math. Anal. 184 (1994), 431–436.
- [6] A. Gil'anyi, Eine Parallelogrammgleichung "aquivalente Ungleichung, Aequationes Math. **62** (2001), 303–309.
- [7] A. Gil'anyi, On a problem by K. Nikoden, Math. Inequal. Appl. 5 (2002), 701–710.
- [8] E. M. Gordji, M. B. Ghaemi, Y. Cho, and H. Majani, A general system of Euler-Lagrange-type quadratic functional equations in Menger Probabilistic non-Archimedean spaces, Abst. Appl. Anal. 2011 (2011).
- [9] K. Hensel, ber eine neue Begrndung der Theorie der algebraischen Zahlen, Jahresber, Dtsch. Math.-Ver. 6 (1897), 83–88.
- [10] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
- [11] Z. Lewandowska, *Linear operators on generalized 2-normed spaces*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) **42** (1999), 353–368.
- [12] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Mat. 39 (2004), 301–312.
- [13] M. S. Moslehian and T. H. Rassias, Stability of functional equations in non-Archimedean spaces, Applicable Anal. Discrete Math. 1 (2007), 325–334.
- [14] W. Park, Approximate additive mappings in 2-Banach spaces and related topics,
 J. Math. Anal. Appl. 376 (2011), 193-202.
- [15] C. Park, Y. Cho, and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. (2007).
- [16] C. Park, M. E. Gordji, M. B. Ghaemi and H. Majani, Fixed points and approximately octic mappings in non-Archimedean 2-normed spaces, J. Inequal. Appl. (2012).
- [17] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297–300.
- [18] S. M. Ulam. Problems in Modern Mathematics. Wiley. New York: 1964.
- [19] A. White, 2-Banach spaces, Math. Nachr. 42 (1969), 43–60.

Chang Il Kim
Department of Mathematics Education
Dankook University
Yongin 448-701, Korea
E-mail: kci206@hanmail.net

Se Won Park
Department of Liberal arts and Science
Shingyeong University
Hwaseong 445-741, Korea
E-mail: sewpark1079@naver.com