Korean J. Math. **22** (2014), No. 2, pp. 383–393 http://dx.doi.org/10.11568/kjm.2014.22.2.383

CONVERGENCE THEOREMS FOR THE CHOQUET-PETTIS INTEGRAL

CHUN-KEE PARK

ABSTRACT. In this paper, we introduce the concept of Choquet-Pettis integral of Banach-valued functions using the Choquet integral of real-valued functions and investigate convergence theorems for the Choquet-Pettis integral.

1. Introduction

The fuzzy measure was introduced by Sugeno [9] and the Choquet integral of real-valued functions with respect to a fuzzy measure was introduced by Murofushi and Sugeno [5]. The Choquet integral is a generalization of the Lebesgue integral, since they coincide when μ is a classical σ -additive measure. The Choquet integral is a basic tool for the subjective evaluation and decision analysis. The convergence theorems are very important in classical integral theory and also Choquet integral theory. Narukawa, Murofushi and Sugeno [8] introduced the regular fuzzy measure on a locally compact Hausdorff space and showed the usefulness in the point of representation of some functional.

In this paper, we introduce the concept of Choquet-Pettis integral of Banach-valued functions using the Choquet integral of real-valued functions. The Choquet-Pettis integral is an extension of the Choquet

Received June 5, 2014. Revised June 23, 2014. Accepted June 23, 2014.

²⁰¹⁰ Mathematics Subject Classification: 26A39, 28A25, 28B05, 28E10.

Key words and phrases: fuzzy measure, Choquet integral, Choquet-Pettis integral, regular fuzzy measure.

This study was supported by 2013 Research Grant from Kangwon National University (No. 120131798).

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

integral for Banach-valued functions and this integral is also a generalization of the Pettis integral, since the Choquet integral and the Lebesgue integral coincide when μ is a classical σ -additive measure. We also investigate convergence theorems for this integral.

2. Preliminaries

Throughout this paper, X denotes a real Banach space and X^* its dual. Let Ω be a nonempty classical set, Σ a σ -algebra formed by the subsets of Ω and (Ω, Σ) a measurable space.

DEFINITION 2.1.[7,9]. A fuzzy measure on a measurable space (Ω, Σ) is an extended real-valued set function $\mu : \Sigma \to [0, \infty]$ satisfying

(i) $\mu(\emptyset) = 0$,

(ii) $\mu(A) \leq \mu(B)$ whenever $A \subset B, A, B \in \Sigma$.

When $\mu(\Omega) < \infty$, we say that μ is *finite*. When μ is finite, we define the conjugate μ^c of μ by

$$\mu^c(A) = \mu(\Omega) - \mu(A^c),$$

where A^c is the complement of $A \in \Sigma$.

A fuzzy measure μ is said to be *lower semi-continuous* if it satisfies

$$A_1 \subset A_2 \subset \cdots$$
 implies $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.

A fuzzy measure μ is said to be *upper semi-continuous* if it satisfies

$$A_1 \supset A_2 \supset \cdots$$
 and $\mu(A_1) < \infty$ implies $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.

A fuzzy measure μ is said to be *continuous* if it is both lower and upper semi-continuous.

If a fuzzy measure μ is lower(resp., upper) semi-continuous, then μ^c is upper(resp., lower) semi-continuous.

The class of real-valued measurable functions is denoted by M and the class of nonnegative real-valued measurable functions is denoted by M^+ . The class of non-negative upper semi-continuous real-valued functions with compact support is denoted by $USCC^+$ and the class of non-negative lower semi-continuous real-valued functions is denoted by LSC^+ .

DEFINITION 2.2.[1,5]. (1) The Choquet integral of $f \in M^+$ with respect to a fuzzy measure μ on $A \in \Sigma$ is defined by

$$(C)\int_A f d\mu = \int_0^\infty \mu((f \ge r) \cap A) dr,$$

where the right-hand side integral is the Lebesgue integral and $(f \ge r) = \{\omega \in \Omega \mid f(\omega) \ge r\}$ for all $r \ge 0$.

If $(C) \int_A f d\mu < \infty$, then we say that f is *Choquet integrable* on A with respect to μ . Instead of $(C) \int_{\Omega} f d\mu$, we will write $(C) \int f d\mu$.

(2) Suppose $\mu(\Omega) < \infty$. The Choquet integral of $f \in M$ with respect to a fuzzy measure μ on $A \in \Sigma$ is defined by

$$(C) \int_{A} f d\mu = (C) \int_{A} f^{+} d\mu - (C) \int_{A} f^{-} d\mu^{c},$$

where $f^+ = f \vee 0$ and $f^- = -(f \wedge 0)$. When the right-hand side is $\infty - \infty$, the Choquet integral is not defined. If $(C) \int_A f d\mu$ is finite, then we say that f is *Choquet integrable* on A with respect to μ .

 $L_1^+(\mu)$ denotes the class of nonnegative Choquet integrable functions. That is,

$$L_1^+(\mu) := \left\{ f \mid f \in M^+, (C) \int f d\mu < \infty \right\}.$$

The Choquet integral is a generalization of the Lebesgue integral, since they coincide when μ is a classical σ -additive measure. For each $f \in M^+$, we also have

$$(C) \int_{A} f d\mu = \int_{0}^{\infty} \mu((f > r) \cap A) dr, \ \forall A \in \Sigma,$$

$$(c) = \{\omega \in \Omega \mid f(\omega) > r\} \text{ for all } r \ge 0.$$

where (f > r

DEFINITION 2.3.[2]. Let $f, g \in M$. We say that f and g are comonotonic if $f(\omega) < f(\omega') \Rightarrow g(\omega) \leq g(\omega')$ for $\omega, \omega' \in \Omega$. We denote $f \sim g$ when f and g are comonotonic.

DEFINITION 2.4.[3]. A sequence (f_n) of real-valued measurable functions is said to *converge* to f in distribution, in symbols $f_n \not D f$, if

$$\lim_{n \to \infty} \mu((f_n \ge r)) = \mu(f \ge r)) \quad \text{e.c.},$$

where "e.c." stands "except at most countably many values of r".

3. Results

We introduce the concept of Choquet-Pettis integral of Banach-valued functions. The concept of Pettis integral and its properties may be found in [4].

DEFINITION 3.1. A function $f : \Omega \to X$ is called *Choquet-Pettis* integrable if for each $x^* \in X^*$ the function x^*f is Choquet integrable and for every $A \in \Sigma$ there exists $x_A \in X$ such that $x^*(x_A) = (C) \int_A x^* f d\mu$ for all $x^* \in X^*$. The vector x_A is called the *Choquet-Pettis* integral of fon A and is denoted by $(CP) \int_A f d\mu$.

The Choquet-Pettis integral is a generalization of the Pettis integral, since the Choquet integral and the Lebesgue integral coincide when μ is a classical σ -additive measure.

DEFINITION 3.2. (1) Let $f : \Omega \to X$ and $g : \Omega \to X$ be weakly measurable. f and g are said to be *weakly comonotonic* if for each $x^* \in X^* x^* f$ and $x^* g$ are comonotonic. We denote $f \sim_w g$ when f and g are weakly comonotonic.

(2) A sequence (f_n) of X-valued weakly measurable functions is said to converge weakly to f in distribution on Ω , in symbols $f_n \xrightarrow{wD} f$, if for each $x^* \in X^*$ (x^*f_n) converges to x^*f in distribution.

A set $N \in \Sigma$ is called a null set with respect to μ if $\mu(A \cup N) = \mu(A)$ for all $A \in \Sigma$ [6]. " $P(\omega)$ μ -a.e. on A" means that there exists a null set N such that $P(\omega)$ is true for all $\omega \in A - N$, where $P(\omega)$ is a proposition concerning the point of A.

THEOREM 3.3. Let $f : \Omega \to X$ and $g : \Omega \to X$ be Choquet-Pettis integrable. Then

(1) af is Choquet-Pettis integrable and

$$(CP)\int_{A}afd\mu = a(CP)\int_{A}fd\mu$$

for all $A \in \Sigma$ and $a \ge 0$;

(2) if $f \sim_w g$, then f + g is Choquet-Pettis integrable and

$$(CP)\int_{A}(f+g)d\mu = (CP)\int_{A}fd\mu + (CP)\int_{A}gd\mu$$

II $A \in \Sigma$:

for all $A \in \Sigma$;

(3) if $f = g \mu$ -a.e. and μ^c -a.e. on Ω , then

$$(CP)\int_{A}fd\mu = (CP)\int_{A}gd\mu$$

for all $A \in \Sigma$

Proof. (1) Since $f : \Omega \to X$ is Choquet-Pettis integrable, for each $x^* \in X^*$ x^*f is Choquet integrable and for every $A \in \Sigma$ there exists $x_A \in X$ such that $x^*(x_A) = (C) \int_A x^* f d\mu$ for all $x^* \in X^*$. Hence for each $x^* \in X^*$ $x^*(af)$ is Choquet integrable and for every $A \in \Sigma$ $x^*(ax_A) = (C) \int_A x^*(af) d\mu$ for all $x^* \in X^*$. Thus af is Choquet-Pettis integrable and $(CP) \int_A af d\mu = ax_A = a(CP) \int_A f d\mu$ for all $A \in \Sigma$ and $a \geq 0$.

(2) Since $f: \Omega \to X$ and $g: \Omega \to X$ are Choquet-Pettis integrable, for each $x^* \in X^*$ x^*f and x^*g are Choquet integrable and for every $A \in \Sigma$ there exist $x_A, y_A \in X$ such that $x^*(x_A) = (C) \int_A x^* f d\mu$ and $x^*(y_A) = (C) \int_A x^* g d\mu$ for all $x^* \in X^*$. Since $f \sim_w g$, for each $x^* \in$ $X^* x^*(f+g)$ is Choquet integrable and for every $A \in \Sigma$ $x^*(x_A + y_A) = (C) \int_A x^*(f+g) d\mu$ for all $x^* \in X^*$. Thus f + g is Choquet-Pettis integrable and $(CP) \int_A (f+g) d\mu = x_A + y_A = (CP) \int_A f d\mu + (CP) \int_A g d\mu$ for all $A \in \Sigma$.

(3) Since $f: \Omega \to X$ and $g: \Omega \to X$ are Choquet-Pettis integrable, for each $x^* \in X^*$ x^*f and x^*g are Choquet integrable and for every $A \in \Sigma$ there exist $x_A, y_A \in X$ such that $x^*(x_A) = (C) \int_A x^*f d\mu$ and $x^*(y_A) = (C) \int_A x^*g d\mu$ for all $x^* \in X^*$. Since $f = g \mu$ -a.e. and μ^c -a.e. on Ω , $x^*f = x^*g \mu$ -a.e. and μ^c -a.e. on Ω for all $x^* \in X^*$. Hence for every $A \in \Sigma$ (C) $\int_A x^*f d\mu = (C) \int_A x^*g d\mu$ i.e., $x^*(x_A) = x^*(y_A)$ for all $x^* \in X^*$. Hence $x_A = y_A$ i.e., $(CP) \int_A f d\mu = (CP) \int_A g d\mu$.

THEOREM 3.4. Let X be a reflexive Banach space and let (f_n) be a sequence of Choquet-Pettis integrable X-valued functions on Ω . If (f_n) converges weakly to f in distribution on Ω and if g and h are Choquet-Pettis integrable X-valued functions on Ω such that $\mu((x^*h \ge r)) \le$ $\mu((x^*f_n \ge r)) \le \mu((x^*g \ge r))$ e.c. for $n = 1, 2, \cdots$ and $x^* \in X^*$, then f is Choquet-Pettis integrable and $(CP) \int f_n d\mu \to (CP) \int f d\mu$ weakly.

Proof. Since g and h are Choquet-Pettis integrable, for each $x^* \in X$ x^*g and x^*h are Choquet integrable. Since (f_n) converges weakly to f in distribution, for each $x^* \in X$ (x^*f_n) converges to x^*f in distribution.

By hypothesis, $\mu((x^*h \ge r)) \le \mu((x^*f_n \ge r)) \le \mu((x^*g \ge r))$ e.c. for $n = 1, 2, \cdots$ and $x^* \in X^*$. By [3, Theorem 8.9] x^*f is Choquet integrable and $\lim_{n\to\infty} (C) \int_A x^*f_n d\mu = (C) \int_A x^*f d\mu$ for all $A \in \Sigma$ and $x^* \in X^*$. Since f_n is Choquet-Pettis integrable for $n = 1, 2, \cdots$, for each $A \in \Sigma$ there exists $x_{n,A} \in X$ such that $x^*(x_{n,A}) = (C) \int_A x^*f_n d\mu$ for all $x^* \in X^*$, i.e., $x_{n,A} = (CP) \int_A f_n d\mu$. Thus $(x_{n,A})$ is a weak Cauchy sequence in X. Since X is a reflexive Banach space, the sequence $(x_{n,A})$ converges weakly to some $x_A \in X$. Thus $\lim_{n\to\infty} x^*(x_{n,A}) = x^*(x_A)$ for all $x^* \in X^*$. Hence $x^*(x_A) = (C) \int_A x^*f d\mu$ for all $x^* \in X^*$. Thus f is Choquet-Pettis integrable and $x_A = (CP) \int_A f d\mu$ for each $A \in \Sigma$. In particular, $(CP) \int f_n d\mu \to (CP) \int f d\mu$ weakly.

THEOREM 3.5. (1) Let μ be a finite and lower semi-continuous fuzzy measure and let (f_n) be a sequence of real-valued measurable functions. If $f_n \uparrow f \mu$ -a.e. and μ^c -a.e. and there exists a Choquet integrable function g such that $f_1^- \leq g$ on Ω , then f is Choquet integrable and $(C) \int f_n d\mu \uparrow$ $(C) \int f d\mu$.

(2) Let μ be a finite and upper semi-continuous fuzzy measure and let (f_n) be a sequence of real-valued measurable functions. If $f_n \downarrow f \mu$ -a.e. and μ^c -a.e. and there exists a Choquet integrable function g such that $f_1^+ \leq g$ on Ω , then f is Choquet integrable and $(C) \int f_n d\mu \downarrow (C) \int f d\mu$.

Proof. (1) Since $f_n \uparrow f \mu$ -a.e. and μ^c -a.e., $f_n^+ \uparrow f^+ \mu$ -a.e. and $f_n^- \downarrow f^- \mu^c$ -a.e. Since μ is lower semi-continuous, by [11, Theorem 2.4] f^+ is Choquet integrable with respect to μ and $(C) \int f_n^+ d\mu \uparrow (C) \int f^+ d\mu$. Since μ is lower semi-continuous, μ^c is upper semi-continuous. Since there exists a Choquet integrable function g such that $f_1^- \leq g$ on Ω , by [11, Theorem 2.4] f^- is Choquet integrable with respect to μ^c and $(C) \int f_n^- d\mu^c \downarrow (C) \int f^- d\mu^c$. Hence f is Choquet integrable and $(C) \int f_n d\mu \uparrow (C) \int f d\mu$.

(2) The proof is similar to (1).

THEOREM 3.6. Let μ be a finite and continuous fuzzy measure and let X be a reflexive Banach space and let (f_n) be a sequence of Choquet-Pettis integrable X-valued functions on Ω .

(1) If $f_n \uparrow f$ weakly μ -a.e. and μ^c -a.e. and there exists a Choquet integrable function g such that $(x^*f_1)^- \leq g$ on Ω for all $x^* \in X^*$,

then f is Choquet-Pettis integrable and $(CP) \int f_n d\mu \uparrow (CP) \int f d\mu$ weakly.

(2) If $f_n \downarrow f$ weakly μ -a.e. and μ^c -a.e. and there exists a Choquet integrable function g such that $(x^*f_1)^+ \leq g$ on Ω for all $x^* \in X^*$, then f is Choquet-Pettis integrable and $(CP) \int f_n d\mu \downarrow (CP) \int f d\mu$ weakly.

Proof. (1) Let $A \in \Sigma$. Since $f_n \uparrow f$ weakly μ -a.e. and μ^c -a.e. and there exists a Choquet integrable function g such that $(x^*f_1)^- \leq g$ on Ω for all $x^* \in X^*$, by Theorem 3.5 x^*f is Choquet integrable and $(C) \int_A x^* f_n d\mu \uparrow (C) \int_A x^* f d\mu$ for all $x^* \in X^*$. Since f_n is Choquet-Pettis integrable for $n = 1, 2, \cdots$, there exists $x_{n,A} \in X$ such that $x^*(x_{n,A}) = (C) \int_A x^* f_n d\mu$ for all $x^* \in X^*$ i.e., $x_{n,A} = (CP) \int_A f_n d\mu$. Thus $(x_{n,A})$ is a weak Cauchy sequence in X. Since X is a reflexive Banach space, the sequence $(x_{n,A})$ converges weakly to some $x_A \in X$. Thus $x^*(x_{n,A}) \uparrow x^*(x_A)$ for all $x^* \in X^*$. Hence $x^*(x_A) = (C) \int_A x^* f d\mu$ for all $x^* \in X^*$. Thus f is Choquet-Pettis integrable and $x_A = (CP) \int_A f d\mu$. In particular, $(CP) \int f_n d\mu \uparrow (CP) \int f d\mu$ weakly.

(2) The proof is similar to (1).

THEOREM 3.7. Let μ be a finite and continuous fuzzy measure and let X be a reflexive Banach space and let (f_n) be a sequence of Choquet-Pettis integrable X-valued functions on Ω . If $f_n \to f$ weakly μ -a.e. and μ^c -a.e. and there exist Choquet integrable functions g and h such that $h \leq x^* f_n \leq g$ on Ω for $n = 1, 2, \cdots$ and $x^* \in X^*$, then f is Choquet-Pettis integrable and $(CP) \int f_n d\mu \to (CP) \int f d\mu$ weakly.

Proof. Let $A \in \Sigma$. Since $f_n \to f$ weakly μ -a.e., $(x^*f_n)^+ \to (x^*f)^+ \mu$ -a.e. for all $x^* \in X^*$. Since $x^*f_n \leq g$ on Ω for $n = 1, 2, \cdots$ and $x^* \in X^*$, $(x^*f_n)^+ \leq g^+$ on Ω for $n = 1, 2, \cdots$ and $x^* \in X^*$. By [11, Theorem 2.7] $(x^*f)^+$ is Choquet integrable with respect to μ and $\lim_{n\to\infty} (C) \int_A (x^*f_n)^+ d\mu = (C) \int_A (x^*f)^+ d\mu$ for all $x^* \in X^*$. Since $f_n \to f$ weakly μ^c -a.e., $(x^*f_n)^- \to (x^*f)^- \mu^c$ -a.e. for all $x^* \in X^*$. Since $h \leq x^*f_n$ on Ω for $n = 1, 2, \cdots$ and $x^* \in X^*$, $(x^*f_n)^- \leq h^-$ on Ω for $n = 1, 2, \cdots$ and $x^* \in X^*$. By [11, Theorem 2.7] $(x^*f)^-$ is Choquet integrable with respect to μ^c and $\lim_{n\to\infty} (C) \int_A (x^*f_n)^- d\mu^c = (C) \int_A (x^*f)^- d\mu^c$ for all $x^* \in X^*$. Hence x^*f is Choquet integrable with

respect to μ and

$$\lim_{n \to \infty} (C) \int_A x^* f_n d\mu = \lim_{n \to \infty} \left((C) \int_A (x^* f_n)^+ d\mu - (C) \int_A (x^* f_n)^- d\mu^c \right)$$
$$= (C) \int_A (x^* f)^+ d\mu - (C) \int_A (x^* f)^- d\mu^c$$
$$= (C) \int_A x^* f d\mu$$

for all $x^* \in X^*$. Since f_n is Choquet-Pettis integrable for $n = 1, 2, \cdots$, there exists $x_{n,A} \in X$ such that $x^*(x_{n,A}) = (C) \int_A x^* f_n d\mu$ for all $x^* \in X^*$ i.e., $x_{n,A} = (CP) \int_A f_n d\mu$. Since $\lim_{n\to\infty} (C) \int_A x^* f_n d\mu = (C) \int_A x^* f d\mu$ for all $x^* \in X^*$, $(x_{n,A})$ is a weak Cauchy sequence in X. Since Xis a reflexive Banach space, the sequence $(x_{n,A})$ converges weakly to some $x_A \in X$. Thus $\lim_{n\to\infty} x^*(x_{n,A}) = x^*(x_A)$ for all $x^* \in X^*$. Hence $x^*(x_A) = (C) \int_A x^* f d\mu$ for all $x^* \in X^*$. Thus f is Choquet-Pettis integrable and $x_A = (CP) \int_A f d\mu$. In particular, $(CP) \int f_n d\mu \to (CP) \int f d\mu$ weakly.

In the sequel, we assume that Ω is a locally compact Hausdorff space, \mathcal{B} is the class of Borel subsets of Ω , \mathcal{C} is the class of compact subsets of Ω and \mathcal{O} is the class of open subsets of Ω .

DEFINITION 3.8.[8]. Let μ be a fuzzy measure on the measurable space (Ω, \mathcal{B}) . μ is said to be *outer regular* if

$$\mu(B) = \inf\{\mu(O) | O \in \mathcal{O}, O \supset B\}$$

for all $B \in \mathcal{B}$.

The outer regular fuzzy measure μ is said to be *regular* if

$$\mu(O) = \inf\{\mu(C) | C \in \mathcal{C}, C \subset O\}$$

for all $O \in \mathcal{O}$.

The next theorem follows immediately from [8, Proposition 3.3].

THEOREM 3.9. Let μ be a regular fuzzy measure.

(1) If $f_n \in LSC^+$ for $n = 1, 2, \cdots$ and $f_n \uparrow f$ on Ω , then f is Choquet integrable and

$$\lim_{n \to \infty} (C) \int f_n d\mu = (C) \int f d\mu.$$

(2) If $f_n \in USCC^+$ for $n = 1, 2, \cdots$ and $f_n \downarrow f$ on Ω , then f is Choquet integrable and

$$\lim_{n \to \infty} (C) \int f_n d\mu = (C) \int f d\mu.$$

THEOREM 3.10. Let μ be a finite and regular fuzzy measure. If (f_n) is a sequence of continuous real-valued functions with compact support and $f_n \uparrow f$ on Ω , then f is Choquet integrable and

$$\lim_{n \to \infty} (C) \int f_n d\mu = (C) \int f d\mu.$$

Proof. Since (f_n) is a sequence of continuous real-valued functions with compact support and $f_n \uparrow f$ on Ω , $f_n^+ \in LSC^+$ for $n = 1, 2, \cdots$ and $f_n^+ \uparrow f^+$. By Theorem 3.9,

$$\lim_{n \to \infty} (C) \int f_n^+ d\mu = (C) \int f^+ d\mu.$$

Since (f_n) is a sequence of continuous real-valued functions with compact support and $f_n \uparrow f$ on Ω , $f_n^- \in USCC^+$ for $n = 1, 2, \cdots$ and $f_n^- \downarrow f^-$. By Theorem 3.9,

$$\lim_{n \to \infty} (C) \int f_n^- d\mu = (C) \int f^- d\mu.$$

Hence f is Choquet integrable and

$$\lim_{n \to \infty} (C) \int f_n d\mu = \lim_{n \to \infty} \left[(C) \int f_n^+ d\mu - (C) \int f_n^- d\mu \right]$$
$$= \lim_{n \to \infty} (C) \int f_n^+ d\mu - \lim_{n \to \infty} (C) \int f_n^- d\mu$$
$$= (C) \int f^+ d\mu - (C) \int f^- d\mu$$
$$= (C) \int f d\mu.$$

THEOREM 3.11. Let μ be a finite and regular fuzzy measure and let X be a reflexive Banach space. If (f_n) is a sequence of continuous Choquet-Pettis integrable X-valued functions with compact support and $f_n \uparrow f$

weakly on Ω , then f is Choquet-Pettis integrable and

$$\lim_{n \to \infty} (CP) \int f_n d\mu = (CP) \int f d\mu \text{ weakly.}$$

Proof. Let $A \in \Sigma$. Since (f_n) is a sequence of continuous X-valued functions with compact support, (x^*f_n) is a sequence of continuous realvalued functions with compact support for all $x^* \in X^*$. Since $f_n \uparrow f$ weakly on Ω , $x^*f_n \uparrow x^*f$ on Ω for all $x^* \in X^*$. By Theorem 3.10, x^*f is Choquet integrable for all $x^* \in X^*$ and $\lim_{n\to\infty}(C) \int_A x^*f_n d\mu =$ $(C) \int_A x^*f d\mu$ for all $x^* \in X^*$. Since f_n is Choquet-Pettis integrable for $n = 1, 2, \cdots$, there exists $x_{n,A} \in X$ such that $x^*(x_{n,A}) = (C) \int_A x^*f_n d\mu$ for all $x^* \in X^*$ and $n = 1, 2, \cdots$. That is, $x_{n,A} = (CP) \int_A f_n d\mu$ for $n = 1, 2, \cdots$. Thus $(x_{n,A})$ is a weak Cauchy sequence in X. Since X is a reflexive Banach space, the sequence $(x_{n,A})$ converges weakly to some $x_A \in X$. Thus $\lim_{n\to\infty} x^*(x_{n,A}) = x^*(x_A)$ for all $x^* \in X^*$. Hence $x^*(x_A) = (C) \int_A x^* f d\mu$ for all $x^* \in X^*$. Thus f is Choquet-Pettis integrable and $x_A = (CP) \int_A f d\mu$ for each $A \in \Sigma$. In particular,

$$\lim_{n \to \infty} (CP) \int f_n d\mu = (CP) \int f d\mu \text{ weakly.}$$

References

- [1] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953), 131–295.
- [2] D. Dellacherie, Quelques commentaires sur les prolongements de capacités, Séminaire de Probabilités 1969/1970, Strasbourg, Lecture Notes in Mathematics , 191 Springer, Berlin, 1971, 77–81.
- [3] D. Denneberg, Non Additive Measure and Integral, Kluwer Academic Publishers, 1994.
- [4] J. Diestel, J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977
- [5] T. Murofushi, M. Sugeno, An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems 29 (1959), 201-227.
- [6] T. Murofushi, M. Sugeno, A theory of fuzzy measure representations, the Choquet integral, and null sets, J. Math. Anal. Appl. 159 (1991), 532–549.
- [7] T. Murofushi, M. Sugeno, M. Suzaki, Autocontinuity, convergence in measure, and convergence in distribution, Fuzzy Sets and Systems 92 (1997), 197-203.
- [8] Y. Narukawa, T. Murofushi, M. Sugeno, Regular fuzzy measure and representation of comonotonically additive functions, Fuzzy Sets and Systems 112 (2) (2000), 177-186.

- [9] M. Sugeno, Theory of fuzzy integrals and its applications, Dr. Thesis, Tokyo Institute of Technology, 1974.
- [10] Z. Wang, G. Klir, W. Wang, Monotone set functions defined by Choquet integral, Fuzzy Sets and Systems 81 (1996), 241–250.
- [11] D. Zhang, C. Guo, D. Liu, Set-valued Choquet integrals revisited, Fuzzy Sets and Systems 147 (2004), 475–485.

Chun-Kee Park Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: ckpark@kangwon.ac.kr