DOI QR코드

DOI QR Code

메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리된 목재 시험편의 연소특성

Combustion Characteristics of Wood Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid (Mn+)s

  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 투고 : 2014.06.09
  • 심사 : 2014.06.23
  • 발행 : 2014.06.30

초록

이 연구에서는 메틸렌피페라지노메틸-비스-포스폰산 금속염($PIPEABPM^{n+}$)과 메틸렌피페라지노메틸-비스-포스폰산(PIPEABP) 으로 처리된 리기다 소나무의 연소성을 시험하였다. 15 wt%의 메틸렌피페라지노메틸-비스-포스폰산 금속염과 메틸렌피페라지노메틸-비스-포스폰산 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 그 결과, 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 메틸렌피페라지노메틸-비스-포스폰산을 처리한 시험편에 비해 최대질량감소율($MLR_{peak}$)이 (0.104~0.121) g/s으로 낮았다. 그리고 그의 금속염으로 처리한 시험편($PIPEABPM^{n+}$)은 금속염으로 처리하지 않은 시험편(PIPEABP)보다 낮은 총연기발생률(TSRR), (224.4~484.0) $m^2/m^2$과 낮은 $CO_{mean}$ (0.0537~0.0628) kg/kg 값을 보였다. 특별히 2차 연기발생속도(2nd-SPR)는 메틸렌피페라지노메틸-비스-포스폰산 니켈염($PIPEABPNi^{2+}$)으로 처리한 시험편을 제외하고, 금속염 처리 시험편($PIPEABPM^{n+}$)은 (0.0117~0.0146) g/s으로서 금속염으로 처리하지 않은 시험편(PIPEABP)에 비하여 낮았다. 따라서 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 처리하지 않은 시험편에 비하여 그의 연소 억제성을 부분적으로 향상시켰다.

This study was performed to test the combustive properties of pinus rigida specimens treated with methylpiperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$)s and methylpiperazinomethyl-bis-phosphonic acid (PIPEABP). Pinus rigida Plates were painted in three times with 15 wt% $PIPEABPM^{n+}s$ and PIPEABP solutions at the room temperature respectively. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It was indicated that the specimens treated with $PIPEABPM^{n+}s$ showed the lower speed to peak mass loss rate ($MLR_{peak}$), (0.104~0.121) g/s than that of PIPEABP plate. In adition, the specimens treated with $PIPEABPM^{n+}s$ showed both the lower total smoke release rate (TSRR), (224.4~484.0) $m^2/m^2$ and $CO_{mean}$ production (0.0537~0.0628) kg/kg than those of PIPEAB plate. Especially, for the specimens treated with $PIPEABPM^{n+}$ by reducing the smoke production rate except 2nd-smoke production rate (2nd-SPR), (0.0254~0.02270) g/s treated with $PIPEABPNi^{2+}$, 2nd-SPR (0.0117~0.0146) g/s was lower than that of PIPEABP plate. Thus, It is supposed that the combustion-retardation properties were improved by the partial due to the treated $PIPEABPM^{n+}s$ in the virgin plate.

키워드

참고문헌

  1. E. Baysal, M. Altinok, M. Colak, S. K. Ozaki and H. Toker, "Fire Resistance of Douglas Fir (Psedotsuga Menzieesi) Treated With Borates and Natural Extractives", Bioresour. Technol., Vol. 98, No. 5, pp. 1101-1105 (2007). https://doi.org/10.1016/j.biortech.2006.04.023
  2. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Falme Retardant Treated Plyood", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  3. Y. J. Chung, "Comparison of Combustion Proprties of Native Wood Species Used for Fire Pots in Korea", J. Ind. Eng. Chem., Vol. 16, No. 1, pp. 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  4. Article 43 of Building Code, Article 61 of Enforcement Ordinance, "The Internal Finish Material of the Building" (2004).
  5. Article 12 of Firefighting Basic Law, Article 20 of Decree, "The Subject Merchandise Flame and Flame Performance Standard" (2005).
  6. P. W. Lee and J. H. Kwon, "Effects of the Treated Chemicals on Fire Retardancy of Fire Retardant Treated Particle Boards", Mogjae-Gonghak, Vol. 11, No. 5, pp. 16-22 (1983).
  7. T. S. Mcknight, "The Hygroscopicity of Wood Treated With Fire-Retarding Compounds", Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  8. J. C. Middleton, S. M. Dragoner and F. T. Winters, Jr., "An Evaluation of Borates and Other Inorganic Salts as Fire Retardants for Wood Products", Fore. Prod. J., Vol. 15, No. 12, pp. 463-467 (1965).
  9. I. S. Goldstein and W. A. Dreher, "A. Non-Hygroscopic Fire Retardant Treatment for Wood", Froe. Prod. J., Vol. 11, No. 5, pp. 235-237 (1961).
  10. R. Kozlowski and M. Hewig, "1st Int Conf. Progress in Flame Retardancy and Flammability Testing", Pozman, Poland, Institute of Natural Fibres (1995).
  11. R. Stevens, S. E. Daan, R. Bezemer and A. Kranenbarg, "The Strucure-Activity Relationship of Retardant Phosphorus Compounds in Wood", Polym. Degrad. Stab., Vol. 91, No. 4, pp. 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  12. Y. J. Chung, Y. H. Kim and S. B. Kim, "Flame Retardant Properties of Polyurethane Produced by the Addition of Phosphorous Containing Polyurethane Oligomers (II)", J. Ind. Eng. 15, No. 6, pp. 888-893 (2009) https://doi.org/10.1016/j.jiec.2009.09.018
  13. Y. J. Chung, "Flame Retardancy of Veneers Treated by Ammonium Salts", J. Korean Ind. Eng. Chem., Vol. 18, No. 3, pp. 251-255 (2007).
  14. M. L. Hardy, "Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 545-556 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  15. Y. Tanaka, "Epoxy Resin Chemistry and Technology", Marcel Dekker, New York (1988).
  16. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", Eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK (1986).
  17. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, ACS Symposium Series 797 (2001).
  18. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  19. Korean Patent, "Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds", No. 10-2011-0034978 (2011).
  20. Y. J. Chung and E. Jin, "Synthesis of Alkylenediaminoalkyl- Bis-Phosphonic Acid Derivatives", J. of Korean Oil Chemist's Soc., Vol. 30, No. 1, pp. 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  21. E. Jin and Y. J. Chung, "Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl- Bis-Phosphonic Acid ($M^{2+}$)", Fire Sci. Eng. Vol. 27, No. 6, pp. 70-76 (2013).
  22. Cischem Com, "Flame Retardants", Chischem. Com. CO., Ltd. (2009).
  23. J. C. Kotz, P. M. Treichel and G. C. Weaver, "Electron Transfer Reactions", Chemistry & Chemical Reactivity, Sixth Ed., Thomson Learning, Inc., Toronto, Canada (2006).
  24. M. Delichatsios, B. Paroz and A. Bhargava, "Flammability Properties for Charring Materials", Fire Safety Journal, Vol. 38, No. 3, pp. 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  25. V. Babrauskas, "The SFPE Handbook of Fire Protection Engineering", Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  26. J. G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  27. A. P. Mourituz, Z. Mathys and A. G. Gibson, "Heat Release of Polymer Composites in Fire", Composites: Part A, Vol. 38, No. 7, pp. 1040-1054 (2005).
  28. M. M. Hirscher, "Reduction of Smoke Formation from and Flammability of Thermoplastic Polymers by Metal Oxides", POLYMER, Vol. 25(March), pp. 405-411 (1984). https://doi.org/10.1016/0032-3861(84)90296-9
  29. J. Zhang, D. D. Jiang and C. A. Wilkie, "Thermal and Flame Properties of Polyethylene and Polypropylene Nanocomposites Based on an Oligomerically-modified Clay", Polm. Degrad. Stab., Vol. 91, pp. 298-304 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  30. Y. J. Chung, H. M. Lim, E. Jin and J. K. Oh, "Combustion- retardation Properties of Low Density Polyethylene and Etylene Vinyl Acetate Mixtures with Magnesium Hydroxide", Appl. Chem. Eng., Vol. 22, pp. 439-443 (2011).
  31. S. Ishihara, "Smoke and Toxic Gases Produced During Fire", Wood Research and Technical Notes, Vol. 16, No. 5, pp. 49-62 (1981).

피인용 문헌

  1. Combustive Properties of Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid (Mn+)s vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1068
  2. Production of Carbon Monoxide and Carbon Dioxide Gases in the Combustion Tests vol.29, pp.5, 2015, https://doi.org/10.7731/KIFSE.2015.29.5.007