DOI QR코드

DOI QR Code

Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

  • Phan, Mi Sa Vo (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Seo, Jang-Kyun (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Su-Heon (Department of Applied Biology, Kyungpook National University) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University)
  • Received : 2014.02.11
  • Accepted : 2014.03.20
  • Published : 2014.06.01

Abstract

Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV) from Glycine soja (wild soybean), named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean) and Pisum sativum (pea) as well as N. benthamiana, but not the other legume species.

Keywords

References

  1. Bendahmane, M., Szecsi, J., Chen, I., Berg, R. H. and Beachy, R. N. 2002. Characterization of mutant Tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement. Proc. Natl. Acad. Sci. USA 99:3645-3650. https://doi.org/10.1073/pnas.062041499
  2. Boyer, J. C. and Haenni, A. L. 1994. Infectious transcripts and cDNA clones of RNA viruses. Virology 198:415-426. https://doi.org/10.1006/viro.1994.1053
  3. Dopazo, J. 1994. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J. Mol. Evol. 38:300-304.
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  5. Hong, J., Ohnishi, S., Masuta, C., Choi, J. and Ryu, K. 2007. Infection of soybean by Cucumber mosaic virus as determined by viral movement protein. Arch. Virol. 152:321-328. https://doi.org/10.1007/s00705-006-0847-3
  6. Hong, J. S., Masuta, C., Nakano, M., Abe, J. and Uyeda, I. 2003. Adaptation of Cucumber mosaic virus soybean strains (SSVs) to cultivated and wild soybeans. Theor. Appl. Genet. 107:49-53. https://doi.org/10.1007/s00122-003-1222-3
  7. Hu, J., Li, H., Barry, K., Wang, M. and Jordan, R. 1995. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two Cucumber mosaic virus isolates infecting banana in Hawaii. Plant Dis. 79:902-906. https://doi.org/10.1094/PD-79-0902
  8. Ilardi, V., Mazzei, M., Loreti, S., Tomassoli, L. and Barba, M. 1995. Biomolecular and serological methods to identify strains of cucumber mosaic cucumovirus on tomato 1. EPPO Bulletin 25:321-327. https://doi.org/10.1111/j.1365-2338.1995.tb01473.x
  9. Jacquemond, M. 2012. Cucumber mosaic virus. Adv. Virus Res. 84:439-504. https://doi.org/10.1016/B978-0-12-394314-9.00013-0
  10. Kim, C. H. and Palukaitis, P. 1997. The plant defense response to Cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J. 16:4060-4068. https://doi.org/10.1093/emboj/16.13.4060
  11. Koshimizu, Y. and Iizuka, N. 1963. Studies on soybean virus diseases in Japan. Bull. Tohoku Natl. Agric. Exp. Stn. 27:1-103.
  12. Lin, H. X., Rubio, L., Smythe, A. B. and Falk, B. W. 2004. Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J. Virol. 78:6666-6675. https://doi.org/10.1128/JVI.78.12.6666-6675.2004
  13. Liu, Y. Y., Yu, S., Lan, Y. F., Zhang, C. L., Hou, S. S., Li, X. D., Chen, X. and Zhu, X. 2009. Molecular variability of five Cucumber mosaic virus isolates from China. Acta Virol. 53:89-97. https://doi.org/10.4149/av_2009_02_89
  14. Masuta, C., Seshimo, Y., Mukohara, M., Jung, H. J., Shigenori, U., Ryu, K. H. and Choi, J. K. 2002. Evolutionary characterization of two lily isolates of Cucumber mosaic virus isolated in Japan and Korea. J. Gen. Plant Pathol. 68:163-168. https://doi.org/10.1007/PL00013070
  15. Nagyova, A. and Subr, Z. 2007. Infectious full-length clones of plant viruses and their use for construction of viral vectors. Acta Virol. 51:223-237.
  16. Nei, M. and Kumar, S. 2000. Molecular evolution and phylogenetics. Oxford University Press, UK. 333 pp.
  17. Owen, J. and Palukaitis, P. 1988. Characterization of Cucumber mosaic virus I. Molecular heterogeneity mapping of RNA 3 in eight CMV strains. Virology 166:495-502. https://doi.org/10.1016/0042-6822(88)90520-X
  18. Owen, J., Shintaku, M., Aeschleman, P., Tahar, S. B. and Palukaitis, P. 1990. Nucleotide sequence and evolutionary relationships of Cucumber mosaic virus (CMV) strains: CMV RNA 3. J. Gen. Virol. 71:2243-2249. https://doi.org/10.1099/0022-1317-71-10-2243
  19. Paalme, V., Gammelgard, E., Jarvekulg, L. and Valkonen, J. P. 2004. In vitro recombinants of two nearly identical potyviral isolates express novel virulence and symptom phenotypes in plants. J. Gen. Virol. 85:739-747. https://doi.org/10.1099/vir.0.19729-0
  20. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:241-323. https://doi.org/10.1016/S0065-3527(03)62005-1
  21. Park, S.-H. and Kim, K.-H. 2006. Agroinfiltration-based Potato virus X replicons to dissect the requirements of viral infection. Plant Pathol. J. 22:386-390. https://doi.org/10.5423/PPJ.2006.22.4.386
  22. Prufer, D., Wipf-Scheibel, C., Richards, K., Guilley, H., Lecoq, H. and Jonard, G. 1995. Synthesis of a full-length infectious cDNA clone of Cucurbit aphid-borne yellows virus and its use in gene exchange experiments with structural proteins from other luteoviruses. Virology 214:150-158. https://doi.org/10.1006/viro.1995.9945
  23. Roossinck, M. J. 2002. Evolutionary history of Cucumber mosaic virus deduced by phylogenetic analyses. J. Virol. 76:3382-3387. https://doi.org/10.1128/JVI.76.7.3382-3387.2002
  24. Roossinck, M. J., Zhang, L. and Hellwald, K. H. 1999. Rearrangements in the 5' nontranslated region and phylogenetic analyses of Cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. J. Virol. 73:6752-6758.
  25. Ryu, K. H., Kim, C. H. and Palukaitis, P. 1998. The coat protein of Cucumber mosaic virus is a host range determinant for infection of maize. Mol. Plant-Microbe Interact. 11:351-357. https://doi.org/10.1094/MPMI.1998.11.5.351
  26. Rzhetsky, A. and Nei, M. 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9:945-967.
  27. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  28. Sala, K. and Bala, E. 1999. Molecular evidence for the existence of two distinct subgroups in cucumber mosaic cucumovirus. Virus Genes 18:221-227. https://doi.org/10.1023/A:1008016202128
  29. Senda, M., Masuta, C., Ohnishi, S., Goto, K., Kasai, A., Sano, T., Hong, J. S. and MacFarlane, S. 2004. Patterning of virusinfected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell 16:807-818. https://doi.org/10.1105/tpc.019885
  30. Seo, J.-K., Kwon, S.-J., Choi, H.-S. and Kim, K.-H. 2009. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive- and negative-strand RNA synthesis. Virology 383:248-260. https://doi.org/10.1016/j.virol.2008.10.033
  31. Takahashi, K., Tanaka, T., Iida, W. and Tsuda, Y. 1980. Studies on virus diseases and causal viruses of soybean in Japan. Bull. Tohoku Nat. Agric. Exp. Stn. 62:1-130.
  32. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  33. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  34. Wahyuni, W., Dietzgen, R., Hanada, K. and Francki, R. 1992. Serological and biological variation between and within subgroup I and II strains of Cucumber mosaic virus. Plant Pathol. 41:282-297. https://doi.org/10.1111/j.1365-3059.1992.tb02350.x

Cited by

  1. A genetically novel, narrow-host-range isolate of cucumber mosaic virus (CMV) from rosemary vol.161, pp.7, 2016, https://doi.org/10.1007/s00705-016-2874-z
  2. Genetic Diversity of Cucumber Mosaic Virus Strain Soybean from Several Areas vol.9, pp.1, 2015, https://doi.org/10.5454/mi.9.1.6
  3. Differences in the metabolic profiles and antioxidant activities of wild and cultivated black soybeans evaluated by correlation analysis vol.100, 2017, https://doi.org/10.1016/j.foodres.2017.08.026
  4. Genotyping of Cucumber mosaic virus isolates in western New York State during epidemic years vol.210, 2015, https://doi.org/10.1016/j.virusres.2015.07.028
  5. First Report of Cucumber mosaic virus Infecting Brassica campestris var. purpuraria in China vol.101, pp.9, 2017, https://doi.org/10.1094/PDIS-02-17-0291-PDN
  6. Pseudorecombination between Two Distinct Strains of Cucumber mosaic virus Results in Enhancement of Symptom Severity vol.30, pp.3, 2014, https://doi.org/10.5423/PPJ.NT.04.2014.0031