DOI QR코드

DOI QR Code

The Reactive Power Compensation for a Feeder by Control of the Power Factor of PWM Converter Trains

PWM 컨버터 차량의 역률 제어를 통한 급전선로의 무효전력 보상

  • Kim, Ronny Yongho (Department of Railroad Electrical and Electronics Engineering, Korea National University of Transportation) ;
  • Kim, Baik (Department of Railroad Electrical and Electronics Engineering, Korea National University of Transportation)
  • Received : 2014.04.15
  • Accepted : 2014.06.10
  • Published : 2014.06.30

Abstract

PWM converter trains exhibit excellent load characteristics in comparison with conventional phase-controlled trains with low power factors, as they can be operated at power factors which are close to unity by means of a voltage vector control method. However, in the case of a high track density or extended feeding, significant line losses and voltage drops can occur. Instead of operating these trains at a fixed unity power factor, this paper suggests a continuous optimal power factor control scheme for each train in an effort to minimize line losses and improve voltage drops according to varying load conditions. The proposed method utilizes the steepest descent algorithm targeting each car in the same feeding section to establish the optimized reactive power compensation levels that can minimize the reactive power loss of the feeder. The results from a simulation of a sample system show that voltage drops can be improved and line losses decreased.

PWM컨버터 차량은 전압벡터제어방식에 의해 부하역률 1.0에 가까운 운전이 가능하므로 기존 저역률의 위상제어방식 차량에 비해 급전선로 전압강하 측면에서 우수한 부하특성을 나타낸다. 그러나 이 경우에도 급 전구간 내의 운전밀도가 높거나 연장급전 구간에서는 선로손실의 증가 및 전압강하 현상이 심각한 수준으로 나타날 수 있다. 본 논문은 PWM컨버터 차량의 역률을 1.0으로 고정하여 운행하는 대신 차량의 운전 조건에 따라 가변적으로 최적 제어함으로써 급전선로의 손실을 최소화 하고 전압 프로파일을 개선하는 방법을 기술하였다. 제시된 방법은 동일 급전구간 내에 운행중인 차량을 대상으로 최대 경사법에 의해 선로의 무효전력손실이 최소화되는 개별 차량의 무효전력 보상량을 결정하게 되며, 이 방법을 표본 계통에 대해 시뮬레이션 한 결과 선로손실의 감소와 함께 전압 프로파일도 상당한 수준으로 개선됨을 알 수 있었다.

Keywords

References

  1. Y.H. Lho (2011) A study on the design of voltage mode PWM DC/DC power converter, Journal of the Korean Society for Railway, 14(5), pp. 411-415. https://doi.org/10.7782/JKSR.2011.14.5.411
  2. J. Dixon, L. Moran, J. Rodriguez, et al. (2005) Reactive power compensation technologies : state-of-the-art review, Proceedings of the IEEE, 93(12), pp. 2144-2164. https://doi.org/10.1109/JPROC.2005.859937
  3. J. Bauer (2008) Single phase pulse width modulated rectifier, Acta Polytechnica, 48(3), pp. 84-87.
  4. A. Bellini, S. Bifaretti, S. Constantini (2002) High power factor converters for single phase AC traction drives, International Conference on Computers in Railways VIII, COMPRAIL'02, Lemnos, Greece, pp. 559-568.
  5. B. Kim (2012) A study on the leading phase operation of single phase PWM converter train, Journal of the Korean Society for Railway, 15(4), pp. 357-363. https://doi.org/10.7782/JKSR.2012.15.4.357
  6. O. Stihi, B. Ooi (1988) A single phase controlled current PWM rectifier, IEEE Transactions on Power Electronics, 3(4), pp. 453-459. https://doi.org/10.1109/63.17967
  7. R. Burachik, L.M. Grana Drummond, A.N. Iusem et al. (1995) Full convergence of the steepest descent method with inexact line searches, Optimization: A Journal of Mathematical Programming and Operations Research, 32(2), pp. 137-146.
  8. T. Kulwowanichpong, C.J. Goodman (2005) Optimal area control of AC railway system via PWM traction drives, IEE Proc. of Electric power application, 152(1), pp. 33-40. https://doi.org/10.1049/ip-epa:20040979
  9. R.Y. Kim, B. Kim (2012) The reactive power control of PWM converter trains for the minimization of feeding losses, Autumn Conference & Annual Meeting of the Korean Society for Railway, Gyeongju, Korea, pp. 151-156.