DOI QR코드

DOI QR Code

Probabilistic Study on Pressure Behavior in Concrete Vacuum Tube Structures

콘크리트 진공튜브의 압력 변화에 대한 확률적 평가

  • Park, Joonam (Department of Civil and Environmental Engineering, Wonkwang University)
  • Received : 2014.03.13
  • Accepted : 2013.06.24
  • Published : 2014.06.30

Abstract

In this paper, a reliability analysis is performed where the pressure change inside a concrete tube is probabilistically estimated considering the uncertainties inherent in the material and the system discontinuity. A set of uncertain quantities related to the equivalent system air permeability and the atmospheric pressure, are defined as random variables with specific distribution. The pressure change inside a concrete tube is then probabilistically described using both analytical and simulation approaches. The reliability analysis confirms that the geometric configuration of a concrete tube needs to be changed from the initial configuration obtained from the deterministic analysis.

본 연구에서는 콘크리트 진공튜브 구조의 설계에 있어서 주어진 재료 및 시스템 구성에서 존재하는 불확실성을 정량화하여 내부기압의 변화를 확률적으로 예측할 수 있는 신뢰성 평가를 수행하였다. 시스템 등가투기계수의 산정 및 외부기압에 영향을 주는 인자들 중 불확실성을 내재하고 있는 인자들을 확률변수로 모델링한 후 수식 유도 및 시뮬레이션을 통해 시간에 따른 내부기압의 변화를 확률적으로 예측하였으며 확정적 해석과 그 결과를 비교 분석한 결과 적정 수준의 신뢰성을 얻기 위해서는 단면의 변화가 반드시 필요한 것으로 나타났다. 이와 같은 튜브구조의 기밀성능에 대한 확률적 해석 결과는 튜브 내부를 주행하는 열차 또는 다른 운송수단의 추진력과 공기저항, 그리고 펌프의 용량을 복합적으로 고려하여 목표 압력을 정하고 튜브 단면을 결정하는데 필요한 기술적 자료로써 활용될 수 있을 것이다.

Keywords

References

  1. T.K. Kim, K.H. Kim, H.B. Kwon (2011) Aerodynamic characteristics of a tube train, Journal of Wind Engineering and Industrial Aerodynamics, 99(12), pp.1187-1196. https://doi.org/10.1016/j.jweia.2011.09.001
  2. A. Cassat, V. Bourquin, M. Mossi, M. Badoux, D. Vernez, M. Jufer, N. Macabrey, P. Rossel (2003) SWISSMETRO - Project Development Status, Proceeding of International Symposium on Speed-up and Service Technology for Railway and Maglev Systems 2003, Tokyo, Japan, pp. 453-410.
  3. KRRI (2009) Development of New Infra-structure Technol-ogy for Ultra High Speed Tube Train, Korea Railroad Research Institute, PK09001C Project Report
  4. J. Park, S-W. Nam, L-H. Kim, I, Yeo (2011) Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test, Journal of the Korean Society for Railway, 14(2), pp.143-150. https://doi.org/10.7782/JKSR.2011.14.2.143
  5. J. Park, L-H. Kim, S-W. Nam (2011) Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: II. System Test and Parametric Analysis, Journal of the Korean Society for Railway, 14(2), pp.151-159. https://doi.org/10.7782/JKSR.2011.14.2.151
  6. S.W. Nam (2010) Parametric study on the capacity of vacuum pump for tube structure, Journal of the Korean Society for Railway, 13(5), pp.516-520.
  7. A. Singhal, A.S. Kiremidjian (1996) Method for probabilistic evaluation of seismic structural damage, Journal of structural Engineering, 122(12), pp.1459-1467. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459)
  8. A. Tan, T.X. Zhang, S.T. Wu (2008) Pressure and density of air in mines, Indian Journal of Radio & Space Physics, 37, pp.64-67.
  9. R.L. Imam, W.J. Conover (1980) Small sample sensitivity analysis techniques for computer models, with an application to risk assessment, Communications in Statistics, 9(17), pp.1749-1842. https://doi.org/10.1080/03610928008827996
  10. J. Park, E-S. Choi (2007) Fragility Analysis for Evaluation and Comparison of Seismic Performance of Building Structures, Journal of Earthquake Engineering Society of Korea, 11(3), pp.11-21. https://doi.org/10.5000/EESK.2007.11.3.011
  11. J. Park, E-S. Choi (2008) Optimal Seismic Rehabilitation of Structures Using Probabilistic Seismic Demand Model, Journal of Earthquake Engineering Society of Korea, 12(3), pp.1-10. https://doi.org/10.5000/EESK.2008.12.3.001
  12. J. Park, P. Towashiraporn, J.I. Craig, B.J. Goodno (2009) Seismic Fragility Analysis of Low-Rise Unreinforced Masonry Structures, Engineering Structures, 31(1), pp.125-137. https://doi.org/10.1016/j.engstruct.2008.07.021