DOI QR코드

DOI QR Code

Electromagnetic Wave Absorbing Properties of FeSiCr and Fe50Ni Flaky Powder-Polymer Composite Sheet

FeSiCr에 Fe50Ni가 첨가된 폴리머 복합 시트의 전자파 흡수 특성

  • Lee, Seok-Moon (Department of LINC, Kumoh National Institute of Technology) ;
  • Kim, Sang-Mun (Department of LINC, Chungnam National University)
  • Received : 2014.04.30
  • Accepted : 2014.06.16
  • Published : 2014.07.01

Abstract

In this paper, we studied the magnetic composite sheets for electromagnetic wave noise absorber of quasi-microwave band by using soft magnetic FeSiCr and Fe50Ni flakes with the thickness of about $1{\mu}m$ and polymer. The magnetic hysteresis curve including saturation magnetization and residual magnetization and the complex permeability characteristics of the composite sheets were investigated to clarify the mixing effect on electromagnetic wave absorption properties. The saturation magnetization was decreased about 10% while the residual magnetization was increased about 15% and the real parts of complex permeability at below 500 MHz were increased 0.6~4 while those values at above 500 MHz were decreased 0.4~2.5 according to the change of contents of FeSiCr and Fe50Ni powders. As a result, the reflection loss can be moved to the lower frequency from 2~3 GHz to 1~1.5 GHz as the contents of Fe50Ni flaky powder into FeSiCr flaky powder was increased up to 50%.

Keywords

References

  1. B. E. Mulhall, Proc. IEE, 111, 188 (1964).
  2. Z. Huibin, Z. Peiheng, L. Haipeng, X. Yangqiu, X. Jianliang, and D. Longjiang, Electronics Lett., 48, 435 (2012). https://doi.org/10.1049/el.2011.3618
  3. S. Yoshida, H. Ono and S. Ando, M. Yamaguchi, and Y. Shimada, Electromagnetic Compatibility, IEEE International Symposium, 2, 962 (2003).
  4. H. Ono, Y. Takase, S. Yoshida, and O. Hashimoto, Electromagnetic Compatibility, IEEE International Symposium, 2, 962 (2003).
  5. V. B. Bregar and A. Znidarsic, Proc. of Asia-Pacific Microwave Conference, IEICE, 1, 540 (2006).
  6. T. Tobana, T. Sasamori, K. Abe, Q. Chen, and K. Sawaya, Electromagnetic Compatibility, IEEE International Symposium, 2, 1248 (2003).
  7. M. M. Dias, H. J. Mozetic, J. S. Barboza, R. M. Martins, L. Pelegrini, and L. Schaeffer, Powder Technology, 237, 213 (2013). https://doi.org/10.1016/j.powtec.2013.01.006
  8. J. B. Kim and T. H. Noh, J. Korean Magnetics Society, 23, 83 (2013). https://doi.org/10.4283/JKMS.2013.23.3.083
  9. T. H. Noh and J. B. Kim, J. Korean Magnetics Society, 20, 143 (2010). https://doi.org/10.4283/JKMS.2010.20.4.143
  10. S. M. Kim and S. M. Lee, J. KIEEME, 25, 431 (2012).
  11. S. M. Kim and S. M. Lee, J. KIEEME, 25, 462 (2012).
  12. J. S. Lee, S. H. Cho, S. H. Yoon, and K. H. Kim, J. Appl. Phys., 115, 17A503 (2014). https://doi.org/10.1063/1.4859015
  13. D. I. Kim, Electromagnetic Wave Absorber (Daeyoungsa, Seoul, 2006) p. 175.
  14. O. Acher and S. Dubourg, American Physical Society, 77, 104440 (2008).
  15. S. Yoshida, H. Ono, S. Anto, S. Ohmuma, M. Yamaguchi, and Y. Shimada, Materia Japan, 42, 193 (2003). https://doi.org/10.2320/materia.42.193