DOI QR코드

DOI QR Code

Effects of Dietary Supplementation of Coffee Meal on Intestinal Enzyme Activity, Biochemical Profiles and Microbial Population in Broiler Chicks

커피박 첨가가 육계의 소장 효소 활성도, 생화학 지표 및 장내 미생물 균총에 미치는 영향

  • Ko, Young-Hyun (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Yun, Seo-Hyun (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Song, Min-Hae (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Kim, Se-Yun (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Kim, Jong-Sun (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Kim, Hyoun-Wook (Animal Products Research and Developmental Division, National Institute of Animal Science) ;
  • Jang, In-Surk (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology)
  • Received : 2014.05.07
  • Accepted : 2014.06.17
  • Published : 2014.06.30

Abstract

The current study was performed to investigate the effects of dietary supplementation of dried coffee meal (CM) on growth performance, intestinal and blood biochemical index, intestinal enzymes, and cecal microbial populations. A total of 162, 3-day-old male broiler chicks were randomly allocated into three dietary groups: control group (CON), basal diet added with 0.5% CM (CM I), and basal diet added with 1.0% CM (CM II). Dietary supplementation of CM did not change bird performance and the relative weight of intestinal mucosal tissues. The birds fed the diet supplemented with CM (0.5 and 1.0%) significantly decreased mucosal glucose concentration (P<0.05) without affecting blood glucose level compared with those fed control diet. The level of blood aspartate aminotransferase (AST) significantly increased in CM II group (P<0.05) without affecting ${\gamma}$-glutamyl transpeptidase (${\gamma}$-GTP) compared with that in the CON group. The specific activity of intestinal maltase, leucine aminopeptidase (LAP) and alkaline phosphatase (ALP) were not affected by dietary supplementation of CM, whereas sucrase activity in birds fed the diet supplemented with CM was decreased (P<0.05) compared to that in the control birds. The colony forming units (CFU) of E. coli in the cecum of CM-fed birds was significantly decreased (P<0.05) compared with that of control birds without changing the CFU of Lactobacillus. In conclusion, dietary supplementation of lower level of CM (0.5%) can be used as a beneficial feed resource without liver toxicity in broiler chicks.

본 시험은 커피박 첨가 사료가 육계의 사양 성적, 소장 점막 세포와 혈액의 생화학 성분, 소장 점막 세포의 효소 활성도 및 맹장 미생물의 균총에 미치는 영향에 대하여 조사하기 위하여 실시되었다. 실험 설계로서 3일령 육계 162수를 각 처리구당 54수씩(n=6, 9수/케이지), 대조군(CON), 커피박 0.5%(CM I) 및 1.0%(CM II) 등 3 처리군에 완전임의 배치하였으며, 커피박 분말은 육계 후기 사양 기간(22~35일령)에 2주 동안 급여하였다. 사양 시험 결과, 커피박 0.5 및 1.0% 첨가는 사양 성적에는 유의적 영향을 미치지 않았다. 소장 점막 세포의 glucose 농도는 커피박 0.5% 및 1.0% 첨가군에서 대조군에 비해 유의하게 감소되는 것으로 나타났으나(P< 0.05), 혈액에서는 처리군 간에는 차이가 없었다. 혈액 중 aspartate aminotransferase(AST)는 커피박 1.0% 군에서 대조군에 비해 유의적으로 높았으나(P<0.05), ${\gamma}$-glutamyl trans- peptidase(${\gamma}$-GTP)는 처리군간 차이가 없었다. 소장 점막 세포에 존재하는 maltase, leucine aminopeptidase(LAP) 및 alkaline phosphatase(ALP) 활성도는 차이가 없었으나, sucrase 활성도는 커피박 첨가 수준에 비례하여 활성도가 현저히 감소되었다(P<0.05). 맹장의 미생물 균총을 분석한 결과, 대조군에 비해 커피박 첨가군(0.5 및 1.0%)에서 유산균에는 차이가 없었지만, 대장균 균총은 현저히 감소되었다(P<0.05). 결론적으로 커피박 1.0% 첨가 사료는 소장 점막세포의 glucose와 sucrase 활성도 감소와 혈액 AST의 농도를 증가시켜 부정적인 영향이 크므로 0.5% 커피박 첨가군이 생리적 지표에 미치는 영향이 적고, 맹장에서 대장균의 성장을 억제하는 항균 효과가 있으므로 육계 사료의 기능성 소재로서 바람직한 적정한 수준이 될 것으로 판단된다.

Keywords

References

  1. Anwar M, Nanda N, Bhatia A, Akhtar R, Mahmood S 2013 Effect of antioxidant supplementation on digestive enzymes in radiation induced intestinal damage in rats. Int J Radiat Biol 89(12):1061-1067. https://doi.org/10.3109/09553002.2013.825062
  2. Argenzio RA 1989 Digestion, absorption, and metabolism. In: Duke's Physiology of Domestic Animal. Swenson MJ. Cornell University Press, Ithaca, New York. 262-432.
  3. Borrelli RC, Visconti A, Mennella C, Anese M, Fogliano V 2002 Chemical characterization and antioxidant properties of coffee melanoidins. J Agric Food Chem 50(22):6527-6533. https://doi.org/10.1021/jf025686o
  4. Daglia M, Papetti A, Gregotti C, Berte F, Gazzani G 2000 In vitro antioxidant and ex vivo protective activities of green and roasted coffee. J Agric Food Chem 48(5):1449-1554. https://doi.org/10.1021/jf990510g
  5. Daglia M, Papetti A, Grisoli P, Aceti C, Spini V, Dacarro C, Gazzani G 2007 Isolation, identification, and quantification of roasted coffee antibacterial compounds. J Agri Food Chem 55:10208-10213. https://doi.org/10.1021/jf0722607
  6. Dahlgvist A 1968 Assay of the intestinal disaccharidase. Anal Biochem 22:99-107. https://doi.org/10.1016/0003-2697(68)90263-7
  7. Donkoh A, Atuahene CC, Kese AG, Mensah-Asante B 1988 The nutritional value of dried coffee pulp (DCP) in broiler chickens' diets. Anim Feed Sci Technol 22:130-146.
  8. Eggum BO, Pedersen B, Jacobsen I 1983 The influence of dietary tea, coffee and coca on protein and energy utilzation of soya-bean and barley in rats. Br J Nutr 50:197-205. https://doi.org/10.1079/BJN19830089
  9. Fan MZ, Stoll B, Jiang R, Burrin DG 2001 Enterocyte digestive enzyme activity along the crypt-villus and longitudinal axes in the neonatal pig small intestine. J Anim Sci 79: 371-381. https://doi.org/10.2527/2001.792371x
  10. Formanek Z, Kerry JP, Higgins FM, Buckley DJ, Morrissey PA, Farkas J 2001 Addition of synthetic and natural antioxidants to ${\alpha}$-tocopheryl acetate supplemented beef patties: effects of antioxidants and packaging on lipid oxidation. Meat Sci 58(4):337-341. https://doi.org/10.1016/S0309-1740(00)00149-2
  11. Gal-Garber O, Uni Z 2000 Chicken intestinal aminopeptidase: partial sequence of the gene, expression and activity. Poult Sci 79(1):41-45. https://doi.org/10.1093/ps/79.1.41
  12. Garcia J, Nicodemus N, Carabano R, De Blass JC 2002 Effect of inclusion of defatted grape seed meal in the diet on digestion and performance of growing rabbits. J Anim Sci 80:162-170. https://doi.org/10.2527/2002.801162x
  13. Gilani GS, Cockell KA, Sepehr E 2005 Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 967-987.
  14. Harada E, Syuto B 1993 Secretin induces precocious cessation of intestinal macromolecular tranmission and maltase development in the suckling rats. Biol Neonate 63:52-60. https://doi.org/10.1159/000243908
  15. Ito N, Fukushima S, Tsuda H 1985 Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit Rev Toxicol 15(2):109-50. https://doi.org/10.3109/10408448509029322
  16. Jang IS, Ko YH, Kang SY, Moon YS, Sohn SH 2007 Effect of dietary supplementation of grape seed meal on growth performance and antioxidant defense status in the intestine and liver from broiler chickens. Kor J Poult Sci 34(1):1-8. https://doi.org/10.5536/KJPS.2007.34.1.001
  17. Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R 2009 Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol 130(2):117-121 https://doi.org/10.1016/j.ijfoodmicro.2009.01.011
  18. King IS, Paterson JYF, Peacock MA, Smith MW, Syme G 1983 Effect of diet upon enterocyte differentiation in rat jejunum. J Physiol(Lond) 344:465-481.
  19. Lalles JP 2010 Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutritional Review 68(6):323-332. https://doi.org/10.1111/j.1753-4887.2010.00292.x
  20. Moog F 1979 The differentiation and redifferentition of the intestinal epithelium and its brush border membrane. In: Ciba Foundation Symposium. Development of Mammalian Absorptive Processes. Excerpta Medica. Armsterdam Oxford, New York. 31-51.
  21. Murray RK, Mayers PK, Granner DK, Rodwell VW 1990 Chemical constituents of blood and body fluids. In: Harper's Biochemistry. Appleton & Lange. Connecticut, USA. 679-693.
  22. Nakayama T, Oishi K 2013 Influence of coffee(Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS Microbiol Lett 343 (2):161-168. https://doi.org/10.1111/1574-6968.12142
  23. Rufian-Henares JA, de la Cueva SP 2009. Antimicrobial activity of coffee melanoidins-a study of their metal-chelating properties. J Agric Food Chem 57(2):432-438 https://doi.org/10.1021/jf8027842
  24. SAS 1996 User's Guide: Statistics Version 6.12 Ed. SAS Inst., Inc., Cary, NC.
  25. Sayeed M, Blumenthal HT 1968. The small intestinal alkaline phosphatase activity in the old mouse. Proc Soc Exp Biol Med 129:1-10. https://doi.org/10.3181/00379727-129-33234
  26. Tebib K, Rouanet JM, Besancon P 1994 Effect of grape seed tannin on the activity of some rat intestinal enzyme activities. Enzyme Protein 48(1):51-60. https://doi.org/10.1159/000474969
  27. Torres KA, Pizauro JM Jr, Soares CP, Silva TG, Nogueira WC, Campos DM, Furlan RL, Macari M 2013 Effects of corn replacement by sorghum in broiler diets on performance and intestinal mucosa integrity. Poult Sci 92(6): 1564-1571. https://doi.org/10.3382/ps.2012-02422
  28. Wiseman J 1984 A note on the nutritive value of dried instant coffee residue for broiler chickens and turkey poults. Anim Feed Sci Technol 10:285-289. https://doi.org/10.1016/0377-8401(84)90024-5
  29. Vallet J, Rouanet JM, Besancon P 1994 Dietary grape seed tannins: effects of nutritional balance and on some enzymic activities along the crypt-villus axis of rat small intestine. Ann Nutr Metab 38:75-84. https://doi.org/10.1159/000177796
  30. 한인규 백인기 최윤재 김법균 서성원 2011 사료 자원핸드북(제 4판). 목운문화재단, 한국동물자원과학회 영양사료연구회. 198-199.

Cited by

  1. Effect of Agricultural Byproduct Supplementation on Growth Performance and Blood Parameters of Broiler Chicken: Meta-analysis vol.45, pp.2, 2018, https://doi.org/10.5536/KJPS.2018.45.2.81