DOI QR코드

DOI QR Code

장시간 등온열화된 AISI316 오스테나이트강의 초음파 비선형성

Ultrasonic Nonlinearity of AISI316 Austenitic Steel Subjected to Long-Term Isothermal Aging

  • Gong, Won-Sik (Dept. of Materials Science and Engineering, Chosun University) ;
  • Kim, ChungSeok (Dept. of Materials Science and Engineering, Chosun University)
  • 투고 : 2014.04.05
  • 심사 : 2014.05.14
  • 발행 : 2014.06.30

초록

본 연구는 고온강도와 화학적 안전성으로 산업기계 구조물의 주요 소재로 사용되고 있는 AISI316 오스테나이트기 스테인레스강의 장시간 등온열처리에 따른 초음파 비선형성 특성을 평가하였다. 장시간 등온열처리는 정해진 시간을 변수로 전기로에서 가속열처리를 수행하였다. 미세조직적으로 정밀분성을 통하여 장시간 열처리에 따른 초음파 비선형성의 변화와 미시적 손상거동을 면밀히 평가하였다. 초음파 비선형성은 1000시간까지 급격하게 감소하고 이후 서서히 감소하였다. 표면조직적으로 입계의 모양이 다각형에서 원형으로 변하며 특히, 1000시간에서는 쌍정이 모두 분해되었다. 입계에 존재하던 델타페라이트는 1000시간에서 관찰되지 않으며 ${\sigma}$상으로 지속적인 변태가 진행되었다. 결과적으로 열처리 초기에는 보이드나 전위의 소멸 그리고 쌍정의 소멸로 초음파 비선형성은 급격히 감소를 하고 이후에는 입계에 $Cr_{23}C_6$석출물의 생성과 ${\sigma}$상 생성으로 초음파 비선형성은 미소하지만 지속적으로 감소한 것으로 판단된다.

This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of $Cr_{23}C_6$ precipitates and ${\sigma}$ phases.

키워드

참고문헌

  1. C. Pruell, J. Y. Kim, J. Qu and L. J. Jacobs, "Evaluation of plasticity driven material damage using Lamb waves," Applied Physics Letters, Vol. 91, 231911 (2007) https://doi.org/10.1063/1.2811954
  2. C. Inserra, V. Tournat and V. Gusev, "Characterization of granular compaction by nonlinear acoustic resonance method," Applied Physics Letters, Vol. 92, 191916 (2008) https://doi.org/10.1063/1.2931088
  3. J. H. Cantrell, "Dependence of microelasticplastic nonlinearity of martensitic stainless steel on fatigue damage accumulation," Journal of Applied Physics, Vol. 100, 063508 (2006) https://doi.org/10.1063/1.2345614
  4. J. H. Cantrell and X. G. Zhang, "Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network," Journal of Applied Physics, Vol. 84, pp. 15-18 (1998)
  5. J. H. Cantrell and W. T. Yost, "Nonlinear ultrasonic characterization of fatigue microstructures," International Journal of Fatigue, Vol. 23, pp. 487-490 (2001) https://doi.org/10.1016/S0142-1123(01)00162-1
  6. H. Lee, C. Chung, C. S. Kim and K. Y. Jhang, "Fully non-contact assessment of acoustic nonlinearity according to plastic deformation in Al6061 alloy," Journal of the Korean Society for Nondestructive Testing, Vol. 32, No. 4, pp. 388-392 (2012) https://doi.org/10.7779/JKSNT.2012.32.4.388
  7. C. S. Kim, I. K. Park and K. Y. Jhang, "Long-term aging diagnosis of rotor steel using acoustic nonlinearity," Journal of the Korean Society for Nondestructive Testing, Vol. 31, No. 6, pp. 642-649 (2011)
  8. D. C. Hurley, D. Balzar and P. T. Purtscher, "Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel," Journal of Materials Research, Vol. 15, No. 9, pp. 2036-2042 (2000) https://doi.org/10.1557/JMR.2000.0292
  9. C. S. Kim, T. H. Nam, S. H. Choi and K. Y. Jhang, "Assessment of plastic deformation in Al6061 alloy using acoustic nonlinearity of laser-generated surface wave," Journal of the Korean Physical Society, Vol. 32, No. 1, pp. 20-26 (2012) https://doi.org/10.7779/JKSNT.2012.32.1.020
  10. L. P. Stoter, "Thermal ageing effects in AISI type 316 stainless steel," Journal of Materials Science, Vol. 16, pp. 1039-1051 (1981) https://doi.org/10.1007/BF00542750
  11. K. Nakata, S. Ikeda, S. Hamada and A. Hishinuma, "Microstructural development due to long-term aging and iron irradiation behavior in weld metals of austenitic stainless steel," Journal of Nuclear Materials, Vol. 233-237, pp. 192-196 (1996) https://doi.org/10.1016/S0022-3115(96)00215-2