DOI QR코드

DOI QR Code

Antioxidant and pancreatic lipase inhibitory activities of Anemarrhena asphodeloides

지모 추출물의 항산화 및 pancreatic lipase 저해 활성 평가

  • Kwon, O Jun (Daegyeong Institute For Regional Program Evaluation) ;
  • Lee, Ha Yeong (Department of Herbal Medicinal Pharmacology, Daegu Haany University) ;
  • Kim, Tae Hoon (Department of Herbal Medicinal Pharmacology, Daegu Haany University) ;
  • Kim, Se Gie (Department of Pharmaceutical Science and Technology, Catholic University of Deagu)
  • 권오준 (대경지역평가단) ;
  • 이하영 (대구한의대학교 한약재약리학과) ;
  • 김태훈 (대구한의대학교 한약재약리학과) ;
  • 김세기 (대구가톨릭대학교 제약산업공학과)
  • Received : 2014.02.27
  • Accepted : 2014.05.16
  • Published : 2014.06.30

Abstract

In this study, the antioxidant and pancreatic lipase inhibitory activities of aqueous methanolic (70% methanol) extract from the roots of Anemarrhena asphodeloides were investigated. The extracts of four solvent fractions (the n-hexane layer, EtOAc layer, n-BuOH layer, and $H_2O$ layer) of the 70% methanol extract were also investigated. Furthermore, the total phenolic content was quantified using a spectrophotometric method. All the tested samples showed dose-dependent radical scavenging and pancreatic lipase inhibitory activities. In particular, the pancreatic lipase inhibitory activity of the ethyl acetate soluble portion (the EtOAc layer) from the rhizomes of the A. asphodeloides was higher than that of the other solvent-soluble portions. The antioxidant property of the extracts was evaluated using radical scavenging assays with DPPH and $ABTS^+$ radicals. 1000 mg/ml of the n-BuOH layer extract showed 91.2% DPPH radical scavenging activity. The EtOAc layer extract and the n-BuOH layer extract showed $IC_{50}=20.5{\pm}1.7mg/ml$ and $IC_{50}=50.5{\pm}0.7mg/ml$ $ABTS^+$ radical scavenging activities, respectively. The anti-obesity efficacy of the A. asphodeloides extract was tested via porcine pancreatic lipase assay. A pancreatic lipase inhibitory activity ($IC_{50}$) of $31.3{\pm}0.1mg/ml$ was obtained from the EtOAc layer extract. These results suggest that A. asphodeloides can be considered a new potential source of natural antioxidant and anti-obesity agents.

지모를 70% methanol로 침지 추출하여 얻어진 추출물에 대해 n-hexane, EtOAc 및 n-BuOH로 순차 용매 분획하였고, 얻어진 결과물에 대하여 DPPH 및 $ABTS^+$ radical 소거능 및 pancreatic lipase 저해활성을 평가하였다. DPPH 라디칼 소거능은 페놀성 화합물의 함량이 상대적으로 높은 n-BuOH 층의 1000 mg/ml의 시험농도에서는 91.2%의 라디칼 소거능을 확인하였고, 지모 추출물에 존재하는 페놀성 화합물이 라디칼 소거능과의 연관성을 시사하였다. 또한 $ABTS^+$ 라디칼 소거능은 EtOAc층이 $IC_{50}=20.5{\pm}1.7mg/ml$, n-BuOH 층이 $IC_{50}=50.5{\pm}0.7mg/ml$의 활성이 확인 되었고, 강한 활성물질의 존재가 시사되었다. 또한, pancreatic lipase 저해활성을 측정한 결과, 강한 $ABTS^+$ 라디칼 소거능을 나타낸 EtOAc 층의 $IC_{50}$$31.3{\pm}0.1mg/ml$의 저해율을 나타내었으며 이는 대조군인 orlistat에 비해 약하나 단일물질로 정제할 경우 더욱 강한 효능의 화합물이 존재할 가능성이 있음을 보여준다. 오일의 형태로 얻어진 n-hexane 분획층은 항산화 활성 및 pancreatic lipase 저해 활성을 거의 나타내지 않았다. 향후 이들 활성물질 동정을 통한 활성 기작에 대한 연구가 필요하며 본 연구결과는 보다 우수한 라디칼 소거능 및 pancreatic lipase 저해능을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 활용가능하리라 사료된다.

Keywords

References

  1. Videla LA, Fermandez V (1988) Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp, 21, 85-92
  2. Halliwell B, Aruoma OJ (1991) DNA damage by oxygen-derived species. FEBS Lett, 281, 9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  3. Jennings PE, Barnett AH (1988) New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabetic Med, 5, 111-117 https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  4. Shim JS, Kim SD, Kim TS, Kim KN (2005) Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean J Food Sci Technol, 37, 78-83
  5. Farag RS, Badei AZMA, Hewedi FM, EL-baroty GSA (1989) Antioxidant activity of some spice essential ols on linoleic acid oxidation in aqueous media. J American Oil Chem Soc, 66, 792-799 https://doi.org/10.1007/BF02653670
  6. Frei B (1994) National antioxidants in human health and disease. Academic Press, San Diego, CA, USA, p 44-55
  7. Branen AL (1975) Toxicology and biochemistry of butylated hydroxy anisole and butylated hydoxytoluane. J Oil Chem Soc, 52, 59-62 https://doi.org/10.1007/BF02901825
  8. Masaki H, Sakaki S, Atsumi T, Sakurai H (1995) Active-oxygen scavenging activity of plants extracts. Biol Pharm Bull, 18, 162-166 https://doi.org/10.1248/bpb.18.162
  9. Bray GA, Popkin BM (1998) Dietary fat intake dose affect obesity. Am J Clin Nutr, 68, 1157-1173
  10. Bray GA, Popkin BM (1999) Dietary fat affects obesity rate. Am J Clin Nutr, 70, 572-573
  11. Levinson ML (1977) Obesity and health. Prev Med, 6, 172-180 https://doi.org/10.1016/0091-7435(77)90016-0
  12. Rexrode KM, Manson JE, Hennekens CH (1996) Obesity and cardiovascular disease. Curr Opin Cardiol, 11, 490-495 https://doi.org/10.1097/00001573-199609000-00007
  13. Sjostrom LV (1992) Morbidity of severely obese subjects. Am J Clin Nutr, 55, 508-515
  14. Bitou N, Nimomiya M. Tsjita T, Okuda H (1999) Screening of lipase inhibitors from marine algae. Lipids, 34, 441-445 https://doi.org/10.1007/s11745-999-0383-7
  15. Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, Von Bergmann K, Strobel W, Sjotro L, Van der Veen EA (1995) Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obesity, 19, 221-226
  16. Hadvay P, Lengsfeld H, Wolter H (1988) Inhibition of pancreatic lipase in vitro by covalent inhibitor tetrahydrolipstatin. Biochem J, 256, 357-361
  17. Peter C, Williams G (2001) Drug treatment of obesity: from past failures to future successes? Br J Clin Pharmacol, 51, 135-141
  18. Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obesity, 24, 758-764 https://doi.org/10.1038/sj.ijo.0801222
  19. Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Dicov Today, 12, 879-889 https://doi.org/10.1016/j.drudis.2007.07.024
  20. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, Jang SJ, Kim TH (2010) Pancreatic lipase inhibition by C-glucosidic flavones isolated from Eremochloa ophiuroides. Molecules, 15, 8251-8259 https://doi.org/10.3390/molecules15118251
  21. Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, Jung JW, Kim YH, Kim TH (2010) Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J Food Preserv, 17, 727-732
  22. Duke JA (2002) Handbook of Medicinal Herbs, 2nd ed, CRC Press, New York, USA, p 27-28
  23. Pardo-Andreu GL, Sanchez-Baldoquin C, Avila- Gonzalez R, Delgado R, Naal Z, Curti C (2006) Fe(III) improves antioxidant and cytoprotecting activities of mangiferin. Eur J Pharmacol, 547, 31-36 https://doi.org/10.1016/j.ejphar.2006.07.040
  24. Iida Y, Oh KB, Saito M, Matsuoka H, Kurata H (2000) In vitro synergism between nyasol, an active compound isolated from Anemarrhena asphodeloides, and azole agents against Candida albicans. Planta Med, 66, 435-438 https://doi.org/10.1055/s-2000-8589
  25. Park HJ, Lee JY, Moon SS, Hwang BK (2003) Isolation and anti-oomycete activity of nyasol from Anemarrhena asphodeloides rhizomes. Phytochemistry, 64, 997-1001 https://doi.org/10.1016/S0031-9422(03)00462-X
  26. Nakashima N, Kimura I, Kimura M, Matsuura H (1993) Isolation of pseudoprototimosaponin AIII from rhizomes of Anemarrhena asphodeloides and its hypoglycemic activity in streptozotocin induced diabetic mice. J Nat Prod, 56, 345-350. https://doi.org/10.1021/np50093a006
  27. Sy LK, Yan SC, Lok CN, Man RYK, Che CM (2008) Timosaponin A-III induces autophagy proceding mitochondria-mediated apoptosis in HeLa cancer cells. Cancer Res, 68, 10229-10237. https://doi.org/10.1158/0008-5472.CAN-08-1983
  28. Ren LX, Luo YF, Li X, Zuo DY, Wu YL (2006) Antidepressant-like effects of sarsasapogenin from Anemarrhena asphodeloides BUNGE(Liliaceae). Biol Pharm Bull, 29, 2304-2306. https://doi.org/10.1248/bpb.29.2304
  29. Blois MS (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  30. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidnt activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  31. Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS (2007) Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett, 276, 93-98 https://doi.org/10.1111/j.1574-6968.2007.00917.x
  32. Gao X, Bjor L, Trajkovski V, Uggla M (2000) Evaluation of antioxidant activities of rosehip ethanol extracts in different test system. J Sci Food Agri, 80, 2021-2027 https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  33. Torel J, Gillard J, Gillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry, 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  34. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem, 26, 1506-1512
  35. Cooke D, Bloom S (2006) The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov, 5, 919-931 https://doi.org/10.1038/nrd2136

Cited by

  1. Fermentation characteristics of mulberry (Cudrania tricuspidata) fruits produced using microbes isolated from traditional fermented food, and development of fermented soybean food vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.866
  2. Comparison of Biological Activities of Ethanol Extracts of Unripe Fruit of Bitter Melon (Momordica charantia L.) Cultivated in Hamyang, Korea vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1637
  3. The Anti-Oxidative Effect of -decoction on the Liver and Spleen Cells of Aged Rats vol.32, pp.4, 2015, https://doi.org/10.13045/acupunct.2015066
  4. Comparison of Linarin Content and Biological Activity in Ethanol Extraction of Chrysanthemum zawadskii vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1414
  5. (Thunb.) Engl.) extracts vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.038
  6. -Hydroxybenzyl alcohol inhibits four obesity-related enzymes in vitro pp.10956670, 2018, https://doi.org/10.1002/jbt.22223
  7. 미성숙 사과의 항산화 및 tyrosinase 저해 활성 평가 vol.23, pp.4, 2014, https://doi.org/10.11002/kjfp.2016.23.4.585
  8. RAW 264.7 세포에서 지모(知母) 80% 에탄올 추출물의 항염증 효과 vol.32, pp.3, 2017, https://doi.org/10.6116/kjh.2017.32.3.97
  9. 추출용매에 따른 영지버섯(Ganoderma lucidum)의 항산화 및 소화효소 저해활성 vol.25, pp.1, 2014, https://doi.org/10.11002/kjfp.2018.25.1.124
  10. 지모 추출물의 피부 미백 및 항산화 효과 연구 vol.34, pp.2, 2014, https://doi.org/10.15188/kjopp.2020.04.34.2.67
  11. 토마토 발효액을 이용한 고추장의 이화학적 및 기능적 특성 vol.52, pp.2, 2014, https://doi.org/10.9721/kjfst.2020.52.2.183