Development of Biodegradable Polymeric Membrane for Interventional Procedure: Preliminary Study

인터벤션 시술을 위한 생분해성 고분자막의 개발 : 예비연구

  • Bang, Jung-Wan (Department of Advanced Material Engineering, Seoul National University Science And Technology) ;
  • Hyun, Chang-Yong (Department of Advanced Material Engineering, Seoul National University Science And Technology) ;
  • Kim, Tae-Hyung (Department of Radiological Science, Kangwon National University) ;
  • So, Woon-Young (Department of Radiological Science, Kangwon National University) ;
  • Kim, Jin-Tae (Department of Advanced Material Engineering, Chungbuk National University) ;
  • Kim, Sang-Sub (Shinwoo Base One) ;
  • Jung, Hee Dong (Department of Radiology, Kang-Dong Kyung-Hee University Medical Center) ;
  • Heo, Yeong Cheol (Department of Radiology, Kang-Dong Kyung-Hee University Medical Center)
  • 방중완 (서울과학기술대학교 신소재공학과) ;
  • 현창용 (서울과학기술대학교 신소재공학과) ;
  • 김태형 (강원대학교 방사선학과) ;
  • 소운영 (강원대학교 방사선학과) ;
  • 김진태 (충북대학교 신소재공학과) ;
  • 김상섭 (신우베이스원) ;
  • 정희동 (강동경희대학교병원 영상의학과) ;
  • 허영철 (강동경희대학교병원 영상의학과)
  • Received : 2014.01.29
  • Accepted : 2014.02.25
  • Published : 2014.03.31

Abstract

This study was to evaluate clinical feasibility of biodegradable polymeric membrane for interventional procedure in preliminary study. Bio-degradable polymetric membrane was produced into a solution by mixing hyaluronic acid powder with NaOH solution in a heating mantle. Three different concentrations of contrast media (10, 20, and 30 vol%) were added to the produced soluble powder, and vertical agitation was performed for 12 hours at a speed of 100 to 200 rpm at a room temperature. It was freeze dried for 24 hours at a temperature $80^{\circ}C$. Pressure on the freeze dried sample was exerted by a hydraulic press in order to form the freeze dried sample into a membrane. The membrane produced with varying contrast medium concentration was visually examined by a scanning electron microscope and radiographically inspected. Under the visual examination, the higher the concentration of contrast medium, the rougher the surface. Radiographic transparency was similar under all conditions of fluoroscopic radiography, simple radiography, and serial radiography. In conclusion, this preliminary study verified that bio-degradable membrane produced with hyaluronic acid was a material with clinical usability.

인터벤션 시술을 위한 생분해성 고분자 재료의 임상적용 가능성을 평가하기 위한 예비실험을 진행하고자 한다. 생분해성 고분자막은 분말상태의 히알루론산을 수산화나트륨 용액에 가열교반기를 이용하여 수용액으로 제조하였다. 제조된 수용제는 조영제를 3가지(10, 20, 30 vol%)로 다르게 하여 첨가하고, 12시간 동안 100-200rpm의 속도로 실온에서 수직교반을 시행하였다. $-80^{\circ}C$에서 24시간 동안 동결건조 한 후, 동결건조된 시료는 막으로 성형하기 위해 유압프레스로 가압하여 제조하였다. 조영제의 함량을 달리하여 제작된 막은 주사전자 현미경을 이용한 육안 검사와 방사선 투과도 시험을 시행하였으며, 육안 검사상 조영제의 함량이 많을수록 표면이 거칠어지는 경향을 보였으며, 방사선투과도 시험은 방사선 투시, 단순촬영, 연속촬영의 조건에서 모두 유사한 방사선투과도를 보였다. 결론적으로 본 예비연구에서 히알루론산으로 제조된 생분해성 막은 임상에서의 사용가능성을 가지고 있는 재료임을 확인할 수 있었다.

Keywords

References

  1. Castaneda-Zuniga WR, Ferral H, Haraldur Bjarnason, Qian Z: Synposis of Castaneda's interventional radiology, Lippincott Williams & Wilkins, 77-116, 2001
  2. Palmaz J.C., Encarnacion C.E.: Chapter 16. Intraluminal stents: general principles., Society of Cardiovascular & Interventional Radiology, 176-183, 1994
  3. Korea Society of Cardio-vascular Interventional Technology: Interventional Radiology, Koonja publisher, 127-133, 143-145, 2011
  4. Park SS, Yoon HK, Lee NS, et. al: Portal vein embolization with use of a new liquid embolic material: an experimental study, JVIR, 339-345, 1999
  5. Nakanishi1 K, Osuga K, Hori S, et al.: Transarterial embolization (TAE) of sacral giant cell Tumor (GCT) using spherical parmanent embolic material superabsorbant polymer microsphere (SAP-MS), SpringerPlus, 2:666, 2013 https://doi.org/10.1186/2193-1801-2-666
  6. Kurdi M, Baeesa S, Bin-Mahfoodh M, Khalil K: Onyx Embolization of Ruptured Intracranial Aneurysm Associated with Behcet's Disease, Case Reports in Vascular Medicine, 2013, Article ID 797045, 7, 2013.
  7. Kang HS, Kim JS, Kim BS et al: Drug release characteristics of biodegradable polymer for stent coating, Korean J. of Biotechnology and bioengineering, 18, 109-110, 2003
  8. Pan CJ, Tang J, Weng Y et al.: Preparation, characterization and anticoagulation of curcumin-eluting controlled biodegradable coating stents, J Control Release, 116, 42-49, 2006 https://doi.org/10.1016/j.jconrel.2006.08.023
  9. Lee YW, Chu By, Lee YG, Kim NH, Kim JH, Kim KI, Kwon SW : Efficacy and safety of the electrospun nanofibrous adhesion barrier for laparoscopic surgery in a rabbit model, J. Korean Surg Soc. 76(2), 73-80, 2009 https://doi.org/10.4174/jkss.2009.76.2.73
  10. Kim I, Seo S, Moon H, Yoo M, et al.: Chitosan and its derivatives for tissue engineering applications, Biotechnol. Advan., (26) 1-21, 2008
  11. Einerson NJ, Stevens KR, Kao WJ: Synthesis and physiochemical analysis of gelatin-based hydrogels for drug carrier matrices, Biomater., (24) 509-523, 2002
  12. Dong ES, Kim SY, Chun T et al.: Collagen scaffolds derived from a marine source and their biocompatibility", Biomater., (27) 2951-2961, 2006
  13. Kim JT, Lee DY, Choi JH: Implanting test of re-hydrated hydrogels by hyaluronic acid microbeads, Biomaterials Research, 15(3), 125-128, 2011
  14. Kim JT, Lee DY, Jang JW, Kim TH and Jang YW : Characterization of Cross Linked Hyaluronic Acid Microbeads by Divinyl Sulfone, Journal of Biomedical Engineering Research 34: 117-122, 2013 https://doi.org/10.9718/JBER.2013.34.3.117
  15. Kim JT, Lee DY, Oh YS, Bang JW, Hyun CY, Kim TH, and Choi JH : Swelling Properties for Cross-linking Degree of Hyaluronic Acid Hydrogels, Biomaterials Research 17(1) : 37-40, 2013
  16. Ko JM, Kook JY, Kim SJ, et al. : Understanding the Human Body, Jungmunkak, 207-209, 2004