Analysis of Automatic Rigid Image-Registration on Tomotherapy

토모테라피의 자동영상정합 분석

  • Kim, Young-Lock (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Cho, Kwang Hwan (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Jung, Jae-Hong (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Jung, Joo-Young (Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Lim, Kwang Chae (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Kim, Yong Ho (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Moon, Seong Kwon (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Bae, Sun Hyun (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Min, Chul Kee (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Kim, Eun Seog (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Yeo, Seung-Gu (Dept. of Radiation Oncology, College of Medicine, Soonchunhyang University of Korea) ;
  • Suh, Tae Suk (Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Choe, Bo-Young (Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea) ;
  • Min, Jung-Whan (Dept. of Radiology, Shin-Gu University of Korea) ;
  • Ahn, Jae Ouk (Dept. of Medical Information Technology Engineering, Soonchunhyang University of Korea)
  • 김영록 (순천향대학교 의과대학 방사선종양학교실) ;
  • 조광환 (순천향대학교 의과대학 방사선종양학교실) ;
  • 정재홍 (순천향대학교 의과대학 방사선종양학교실) ;
  • 정주영 (가톨릭대학교 의과대학 의공학교실, 생체의공학연구소) ;
  • 임광채 (순천향대학교 의과대학 방사선종양학교실) ;
  • 김용호 (순천향대학교 의과대학 방사선종양학교실) ;
  • 문성권 (순천향대학교 의과대학 방사선종양학교실) ;
  • 배선현 (순천향대학교 의과대학 방사선종양학교실) ;
  • 민철기 (순천향대학교 의과대학 방사선종양학교실) ;
  • 김은석 (순천향대학교 의과대학 방사선종양학교실) ;
  • 여승구 (순천향대학교 의과대학 방사선종양학교실) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실, 생체의공학연구소) ;
  • 최보영 (가톨릭대학교 의과대학 의공학교실, 생체의공학연구소) ;
  • 민정환 (신구대학교 방사선과) ;
  • 안재억 (순천향대학교 산업정보대학원 의료공학과)
  • Received : 2013.12.30
  • Accepted : 2014.03.13
  • Published : 2014.03.31

Abstract

The purpose of this study was to analyze translational and rotational adjustments during automatic rigid image-registration by using different control parameters for a total of five groups on TomoTherapy (Accuray Inc, Sunnyvale, CA, USA). We selected a total of 50 patients and classified them in five groups (brain, head-and-neck, lung, abdomen and pelvic) and used a total of 500 megavoltage computed tomography (MVCT) image sets for the analysis. From this we calculated the overall mean value(M) for systematic and random errors after applying the different control parameters. After randomization of the patients into the five groups, we found that the overall mean value varied according to three techniques and resolutions. The deviation for the lung, abdomen and pelvic groups was approximately greater than the deviation for the brain and head-and-neck groups in all adjustments. Overall, using a "full-image" produces smaller deviations in the rotational adjustments. We found that rotational adjustment has deviations with distinctly different control parameters. We concluded that using a combination of the "full-image" technique and "standard" resolution will be helpful in assisting with patients' repositioning and in correcting for set-up errors prior to radiotherapy on TomoTherapy.

본 연구는 토모테라피(Accuray Inc, Sunnyvale, CA, USA)의 자동영상정합 과정에서 조정인자에 따른 종축과 회전축의 오차를 분석하였다. 다섯그룹(두부, 경부, 흉부, 복부, 골반부)으로 구분된 총 50명의 치료가 종료된 환자를 대상으로 하였고, 총 500개의 megavoltage computed tomography (MVCT) 영상을 분석하였다. 모의치료에서 kilovoltage computed tomography (kVCT)영상을 얻었고, 치료계획을 위하여 토모테라피 Hi-Art II 치료계획시스템(Accuray Inc, Sunnyvale, CA, USA)을 사용하였다. 매 회 치료 전 자동영상정합 과정을 시행하였고, 종축과 회전축의 오차를 기록하였다. 종축과 회전축의 일치도(adjustments)에서 자동영상정합을 분석하기 위하여 총 아홉 가지 조정인자를 적용하였고, 각 그룹의 계통적(systematic, ${\Sigma}$)과 통계적(random, RMS) 오차에 대하여 종합적 평균오차(overall mean value, M)를 구했다. 각 그룹 간 회전축 일치도의 종합적 평균오차에서 밀도와 해상도에 따른 다양한 조정인자에 의한 차이를 보였다. 밀도와 해상도가 높아짐에 따라 회전축 일치도에서 편차가 작았다. 그러므로, 토모테라피에서 "full-image"모드와 "standard"해상도를 이용한 자동영상정합은 정확한 오차 확인이 가능하고, 환자 재위치잡이(repositionning) 및 보정(correcting)에 도움이 될 것으로 사료된다.

Keywords

References

  1. Ezzell GA, Galvin JM, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee, Med Phys, 30(8), 2089-2115, 2003 https://doi.org/10.1118/1.1591194
  2. Vergeer MR, Doornaert PA, Rietveld DH, Leemans CR, Slotman BJ, Langendijk JA. Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves healthrelated quality of life: results of a nonrandomized prospective study using a standardized follow-up program, Int J Radiat Oncol Biol Phys, 74(1), 1-8, 2009 https://doi.org/10.1016/j.ijrobp.2008.07.059
  3. Bucci MK, Bevan A, Roach M 3rd. Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond, CA Cancer J Clin, 55(2), 117-134, 2005 https://doi.org/10.3322/canjclin.55.2.117
  4. Aird EG, Conway J. CT simulation for radiotherapy treatment planning, Br J Radiol, 75(900), 937-949, 2002 https://doi.org/10.1259/bjr.75.900.750937
  5. Yartsev S, Kron T, Van Dyk J. Tomotherapy as a tool in image-guided radiation therapy (IGRT): theoretical and technological aspects, Biomed Imaging Interv J, 3(1), e16, 2007
  6. Yartsev S, Kron T, Van Dyk J. Tomotherapy as a tool in image-guided radiation therapy (IGRT): current clinical experience and outcomes, Biomed Imaging Interv J, 3(1), e17, 2007
  7. Mackie TR, Kapatoes J, Ruchala K, et al. Image guidance for precise conformal radiotherapy, Int J Radiat Oncol Biol Phys, 56(1), 89-105, 2003. https://doi.org/10.1016/S0360-3016(03)00090-7
  8. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy, Med Phys, 20(6), 1709-1719, 1993 https://doi.org/10.1118/1.596958
  9. Woodford C, Yartsev S, Van Dyk J. Optimization of megavoltage CT scan registration settings for brain cancer treatments on tomotherapy, Phys Med Biol, 52(8), 185-193, 2007 https://doi.org/10.1088/0031-9155/52/8/N04
  10. James SW. Helical tomotherapy in the community setting: a personal account, Commun Oncol, 6(10), 463-467, 2009 https://doi.org/10.1016/S1548-5315(11)70284-4
  11. Boswell S, Tome W, Jeraj R, Jaradat H, Mackie TR. Automatic registration of megavoltage to kilovoltage CT images in helical tomotherapy: an evaluation of the setup verification process for the special case of a rigid head phantom, Med Phys, 33(11), 4395-4404, 2006 https://doi.org/10.1118/1.2349698
  12. Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL. Patient dose from megavoltage computed tomography imaging, Int J Radiat Oncol Biol Phys, 70(5), 1579-1587, 2008 https://doi.org/10.1016/j.ijrobp.2007.11.048
  13. Ruchala KJ, Olivera GH, and Kapatoes JM. Limited-data image registration for radiotherapy positioning and verification, Int J Radiat Oncol Biol Phys, 54(2), 592-605, 2002 https://doi.org/10.1016/S0360-3016(02)02895-X
  14. Meeks SL, Harmon JF Jr , Langen KM, Willoughby TR, Wagner TH, Kupelian PA. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit, Med Phys, 32(8), 2673-2681, 2005 https://doi.org/10.1118/1.1990289
  15. Mahan SL, Ramsey CR, Scaperoth DD, Chase DJ, Byrne TE. Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis, Int J Radiat Oncol Biol Phys, 63(5), 1576-1583, 2005 https://doi.org/10.1016/j.ijrobp.2005.05.015
  16. Zeidan OA, Langen KM, Meeks SL, et al. Evaluation of image-guidance protocols in the treatment of head and neck cancers, Int J Radiat Oncol Biol Phys, 67(3), 670-677, 2007. https://doi.org/10.1016/j.ijrobp.2006.09.040
  17. Liu H, Wu Q. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer, Med Phys, 38(12), 6362-6370, 2011 https://doi.org/10.1118/1.3658567
  18. Kaiser A, Schultheiss TE, Wong JY, et al. Pitch, roll, and yaw variations in patient positioning, Int J Radiat Oncol Biol Phys, 66(3), 949-955, 2006 https://doi.org/10.1016/j.ijrobp.2006.05.055
  19. Schubert LK, Westerly DC, Tome WA, et al. A Comprehensive assessment by tumor Site of patient setup using daily MVCT imaging from over three 3,800 helical tomotherapy treatments, Int J Radiat Oncol Biol Phys, 73(4), 1260-1269, 2009 https://doi.org/10.1016/j.ijrobp.2008.11.054
  20. Yan D, Wong J, Vicini F, et al. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors, Int J Radiat Oncol Biol Phys, 38(1), 197-206, 1997 https://doi.org/10.1016/S0360-3016(97)00229-0
  21. Yan D, Lockman D, Martinez A, et al. Computed tomography guided management of interfractional patient variation, Semin Radiat Oncol, 15(3), 168-179, 2005 https://doi.org/10.1016/j.semradonc.2005.01.007
  22. Lee S, Cao YJ, Shim JB, et al. Evaluation of the Accuracy of Different Combinations of Automatic Registration Selection Factors in Obtaining Tomotherapy Megavoltage Computed Tomography Images, J Korean Phys Soc, 60(11), 1961-1966, 2012 https://doi.org/10.3938/jkps.60.1961