DOI QR코드

DOI QR Code

Biaxial flexural strength and phase transformation of Ce-TZP/$Al_2O_3$ and Y-TZP core materials after thermocycling and mechanical loading

  • Gungor, Merve Bankoglu (Department of Prosthodontics, Faculty of Dentistry, Gazi University) ;
  • Yilmaz, Handan (Department of Prosthodontics, Faculty of Dentistry, Gazi University) ;
  • Aydin, Cemal (Department of Prosthodontics, Faculty of Dentistry, Gazi University) ;
  • Nemli, Secil Karakoca (Department of Prosthodontics, Faculty of Dentistry, Gazi University) ;
  • Bal, Bilge Turhan (Department of Prosthodontics, Faculty of Dentistry, Gazi University) ;
  • Tiras, Tulay (Department of Physics, Faculty of Science, Anadolu University)
  • Received : 2013.12.19
  • Accepted : 2014.05.07
  • Published : 2014.06.30

Abstract

PURPOSE. The purpose of the present study was to evaluate the effect of thermocycling and mechanical loading on the biaxial flexural strength and the phase transformation of one Ce-TZP/$Al_2O_3$ and two Y-TZP core materials. MATERIALS AND METHODS. Thirty disc-shaped specimens were obtained from each material. The specimens were randomly divided into three groups (control, thermocycled, and mechanically loaded). Thermocycling was subjected in distilled water for 10000 cycles. Mechanical loading was subjected with 200 N loads at a frequency of 2 Hz for 100000 times. The mean biaxial flexural strength and phase transformation of the specimens were tested. The Weibull modulus, characteristic strength, 10%, 5% and 1% probabilities of failure were calculated using the biaxial flexural strength data. RESULTS. The characteristic strengths of Ce-TZP/$Al_2O_3$ specimens were significantly higher in all groups compared with the other tested materials (P<.001). Statistical results of X-ray diffraction showed that thermocycling and mechanical loading did not affect the monoclinic phase content of the materials. According to Raman spectroscopy results, at the same point and the same material, mechanical loading significantly affected the phase fraction of all materials (P<.05). CONCLUSION. It was concluded that thermocycling and mechanical loading did not show negative effect on the mean biaxial strength of the tested materials.

Keywords

References

  1. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011;7:858-65. https://doi.org/10.1016/j.actbio.2010.09.020
  2. Yilmaz H, Nemli SK, Aydin C, Bal BT, Tiras T. Effect of fatigue on biaxial flexural strength of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Dent Mater 2011;27:786-95.
  3. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  4. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hubsch C. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater 2012;8:1213-20. https://doi.org/10.1016/j.actbio.2011.11.016
  5. Yang G, Li JC, Wang GC, Yashima M, Min SL, Chen TC. Investigation on strengthening and toughening mechanisms of Ce-TZP/Al2O3 nanocomposites. J Metall Mater Trans A 2006;37:1969-75. https://doi.org/10.1007/s11661-006-0139-2
  6. Mangalaraja RV, Chandrasekhar BK, Manohar P. Effect of ceria on the physical, mechanical and thermal properties of yttria stabilized zirconia toughened alumina. Mater Sci Eng A 2003;343:71-5. https://doi.org/10.1016/S0921-5093(02)00368-4
  7. Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/Alumina nanocomposites doped with titania. Ceram Int 1998;24:497-506. https://doi.org/10.1016/S0272-8842(97)00048-5
  8. Ban S. Reliability and properties of core materials for all-ceramic dental restorations. Jpn Dent Sci Rev 2008;44:3-21. https://doi.org/10.1016/j.jdsr.2008.04.001
  9. Tanaka K, Tamura J, Kawanabe K, Nawa M, Uchida M, Kokubo T, Nakamura T. Phase stability after aging and its influence on pin-on-disk wear properties of Ce-TZP/$Al_2O_3$ nanocomposite and conventional Y-TZP. J Biomed Mater Res A 2003;67:200-7.
  10. Nawa M, Bamba N, Sekino T, Niihara K. The effect of $TiO_2$ addition on strengthening and toughening in intragranular type of 12Ce-TZP/$Al_2O_3$ nanocomposites. J Eur Ceram Soc 1998;18:209-19. https://doi.org/10.1016/S0955-2219(97)00116-7
  11. Ban S, Sato H, Suehiro Y, Nakanishi H, Nawa M. Biaxial flexure strength and low temperature degradation of Ce-TZP/ $Al_2O_3$ nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res B Appl Biomater 2008;87:492-8.
  12. Hirano M, Inada H. Fracture toughness, strength and Vickers hardness of yttria-ceria-doped tetragonal zirconia/alumina composites fabricated by hot isostatic pressing. J Mater Sci 1992;27:3511-8. https://doi.org/10.1007/BF01151827
  13. Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/ $Al_2O_3$ nanocomposite and a veneering ceramic. Dent Mater 2007;23:1500-5. https://doi.org/10.1016/j.dental.2007.01.005
  14. Borchers L, Stiesch M, Bach FW, Buhl JC, Hubsch C, Kellner T, Kohorst P, Jendras M. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 2010;6:4547-52. https://doi.org/10.1016/j.actbio.2010.07.025
  15. Perdigao J, Pinto AM, Monteiro RC, Braz Fernandes FM, Laranjeira P, Veiga JP. Degradation of dental $ZrO_2$-based materials after hydrothermal fatigue. Part I: XRD, XRF, and FESEM analyses. Dent Mater J 2012;31:256-65. https://doi.org/10.4012/dmj.2011-216
  16. Pittayachawan P, McDonald A, Petrie A, Knowles JC. The biaxial flexural strength and fatigue property of Lava Y-TZP dental ceramic. Dent Mater 2007;23:1018-29. https://doi.org/10.1016/j.dental.2006.09.003
  17. Ban S, Suehiro Y, Nakanishi H, Nawa M. Fracture toughness of dental zirconia before and after autoclaving. J Ceram Soc Jpn 2010;118:406-9. https://doi.org/10.2109/jcersj2.118.406
  18. Sato H, Yamada K, Pezzotti G, Nawa M, Ban S. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment. Dent Mater J 2008;27:408-14. https://doi.org/10.4012/dmj.27.408
  19. Nakamura T, Yamashita K, Neo M. Mechanical properties of zirconia/alumina nano-composite after soaking in various water-based conditions. Key Eng Mater 2006;309-11:1219-22. https://doi.org/10.4028/www.scientific.net/KEM.309-311.1219
  20. Takano T, Tasaka A, Yoshinari M, Sakurai K. Fatigue strength of Ce-TZP/$Al_2O_3$ nanocomposite with different surfaces. J Dent Res 2012;91:800-4. https://doi.org/10.1177/0022034512452277
  21. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99. https://doi.org/10.1016/S0300-5712(98)00037-2
  22. Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A, Van 'T Hof MA, Witter DJ, Kalk W, Jansen JA. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res 2000;79:1519-24. https://doi.org/10.1177/00220345000790071501
  23. ISO 6872. Dentistry-ceramic materials. Geneva; Switzerland; International Organization for Standardization; 2008.
  24. Garvie RC, Nicholoson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x
  25. Kim BK, Hahn JW, Han KR. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. J Mater Sci Lett 1997;16:669-71. https://doi.org/10.1023/A:1018587821260
  26. Bona AD, Anusavice KJ, DeHoff PH. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater 2003;19:662-9. https://doi.org/10.1016/S0109-5641(03)00010-1
  27. Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater 2007;23:106-14. https://doi.org/10.1016/j.dental.2005.12.008
  28. Karakoca S, Yilmaz H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics. J Biomed Mater Res B Appl Biomater 2009;91:930-7.
  29. Gupta TK, Lange FF, Bechtold JH. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase. J Mater Sci 1978;13:1464-70. https://doi.org/10.1007/BF00553200
  30. Kailer A, Nickel KG, Gogotsi YG. Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J Raman Spectrosc 1999;30:939-46. https://doi.org/10.1002/(SICI)1097-4555(199910)30:10<939::AID-JRS460>3.0.CO;2-C
  31. Behrens G, Dransmann GW, Heuer AH. On the isothermal martensitic transformation in 3Y-TZP. J Am Ceram Soc 1993;76:1025-30. https://doi.org/10.1111/j.1151-2916.1993.tb05330.x
  32. Nemli SK, Yilmaz H, Aydin C, Bal BT, Tiras T. Effect of fatigue on fracture toughness and phase transformation of Y-TZP ceramics by X-ray diffraction and Raman spectroscopy. J Biomed Mater Res B Appl Biomater 2011 Nov 21.

Cited by

  1. Influence of Different Framework Designs on the Fracture Properties of Ceria-Stabilized Tetragonal Zirconia/Alumina-Based All-Ceramic Crowns vol.9, pp.5, 2016, https://doi.org/10.3390/ma9050339
  2. Layered Manufacturing of Dental Ceramics: Fracture Mechanics, Microstructure, and Elemental Composition of Lithography-Sintered Ceramic pp.1059941X, 2019, https://doi.org/10.1111/jopr.12748
  3. The Effect of in vitro Aging and Fatigue on the Flexural Strength of Monolithic High-translucency Zirconia Restorations vol.19, pp.7, 2014, https://doi.org/10.5005/jp-journals-10024-2349