DOI QR코드

DOI QR Code

수종의 귀화식물 수용성추출물의 제초 및 항균 활성 탐색

Herbicidal and Antifungal Activities of the aqueous extracts of Several Naturalized Plants

  • 현도경 (제주대학교 식물자원환경전공(농학과)) ;
  • 송진영 (제주대학교 식물자원환경전공(농학과)) ;
  • 김태근 (제주대학교 식물자원환경전공(농학과)) ;
  • 정대천 (제주특별자치도 농업기술원) ;
  • 송상철 (제주특별자치도 농업기술원) ;
  • 강영식 (제주대학교 식물자원환경전공(농학과)) ;
  • 차진우 (제주대학교 식물자원환경전공(농학과)) ;
  • 이희선 (제주대학교 식물자원환경전공(농학과)) ;
  • 양영환 (제주특별자치도 한라산연구소) ;
  • 김현철 (제주특별자치도 한라산연구소) ;
  • 송창길 (제주대학교 식물자원환경전공)
  • 투고 : 2013.12.31
  • 심사 : 2014.01.24
  • 발행 : 2014.06.30

초록

본 연구는 귀화식물인 Solidago altissima, Amaranthus retroflexus, Sida spinosa 등을 이용하여 친환경 농자재로 개발하기 위한 기초자료를 제공하기 위해 수용성 추출액의 농도에 따른 수용체 식물의 발아 및 유식물 생장과 실험 병원균의 생장을 조사하였다. 공여체식물에 따른 수용성 추출액 농도가 증가됨에 따라 대부분 검정식물의 상대발아율은 감소하는 경향을 보이는데 S. spinosa(r=-0.540, p<0.01), Physalis wrightii(r=-0.693, p<0.01), A. retroflexus(r=-0.724, p<0.01), S. altissima(r=-0.728, p<0.01), Eclipta prostrata(r=-0.779, p<0.01) 순으로 감소하는 경향이 큰 것으로 조사되었고 평균발아일수도 처리구 농도가 증가함에 따라 발아하는데 소요되는 시간이 증가 되었으며(r=0.769, p<0.01) 공여체식물과 검정식물에 따라 약간의 정도 차이를 보였다. 또한 공여체식물의 수용성 추출액 농도가 증가함에 따라 유식물의 지상부의 길이(r=-0.587, p<0.01), 지하부의 길이(r=-0.741, p<0.01), 생체량(r=-0.574, p<0.01)과 뿌리털의 발생도 감소하였다. 한편 공여체식물의 수용성추출액 농도 증가에 따른 검정 병원균의 생장은 Botrytis cinerea(r=-0.266, p<0.05), Diaporthe citri(r=-0.323 p<0.01), Colletotrichum gloeosporioides(r=-0.512, p<0.01), Pythium ultimum(r=-0.581, p<0.01), Rhizoctonia solani(r=-0.806, p<0.01) 순으로 생장이 억제되었다. 제초 및 항균활성을 보이는 수용체식물의 총 페놀 함량은 S. altissima $17.3{\pm}0.5mg/g$, A. retroflexus $13.1{\pm}0.3mg/g$, P. wrightii $12.0{\pm}0.4mg/g$, S. spinosa $9.5{\pm}0.1mg/g$, E. prostrata $4.1{\pm}0.1mg/g$ 순으로 분석되었다. 이들 결과를 종합하면 귀화식물인 수용체식물들은 자생식물과의 경쟁을 함에 있어 알레로패시 효과를 나타내는 페놀 화합물 등이 수관 내 토양으로 방출하여 하부식생에 대한 발아 및 생장과 토양미생물 생장 등에 영향을 주기 때문에 경쟁적 우위를 점하고 있으며, 천연제초제 살균제로서의 활용 가능성을 가지고 있는 것으로 판단된다.

The study researched germination of the plants and growth of experimented bacteria according to concentration of water extract in order to provide basic data for developing natural agricultural resources by using naturalized plants including Solidago altissima, Amaranthus retroflexus and Sida spinosa. As concentration of water extract increased, most of test plants showed a decrease in relative germinability. Sida spinosa(r=-0.540, p<0.01), Physalis wrightii(r=-0.693, p<0.01), Amaranthus retroflexu(r=-0.724, p<0.01), Solidago altissima(r=-0.728, p<0.01) and Eclipta prostrata(r=-0.779, p<0.01) showed tendency of decrease in relative germinative power in order, respectively. For average germination period, as concentration of the processed group increased, the time for germination increased (r = 0.769, p<0.01) and according to donor plants and test plants, there was a little difference. Also, as concentration of water extract of donor plant, length of above-aerial part(r=-0.587, p<0.01), length of underground part(r=-0.741, p<0.01), fresh weight(r=-0.574, p<0.01) and generation of root hair decreased. An then, for growth of test fungi according to concentration of water extract of donor plants, growths of Botrytis cinerea(r=-0.266, p<0.05), Diaporthe citri(r=-0.323 p<0.01), Colletotrichum gloeosporioides(r=-0.512, p<0.01), Pythiumultimum(r=-0.581, p<0.01) and Rhizoctonia solani(r=-0.806, p<0.01) were repressed in order, respectively. For total amount of content of phenol with herbicidal and Antifungal activities, S. altissima $17.3{\pm}0.5mg/g$, A. retroflexus $13.1{\pm}0.3mg/g$, P. wrightii $12.0{\pm}0.4mg/g$, S. spinosa $9.5{\pm}0.1mg/g$ and E. prostrata L. $4.1{\pm}0.1mg/g$ showed in order, respectively. As these results are summarized, donor plants which were naturalized, have competitive advantage because they release phenolic compounds with allelopathic effect and affect on germination, growth and fungi growth on underground flora compared to native plants and they have eligibility for natural herbicide and germicide.

키워드

참고문헌

  1. Aber, C. J., D. John, and J. M. Melillo. 1991. Terrestrial Ecosystems. Saunder College Pub. pp. 315-316.
  2. Bae, B. H. and Y. Y. kim. 2003. Effect of Leaf Aqueous Extracts from Some Gymnosperm Plant on the Seed Germination, Seedling Growth and Transplant of Hibiscus syriacus Varieties. Journal of ecology and field biology. 26(1): 34-47.
  3. Costilow, R. N. 1981. Biophysical factors in growth. In: Manual of methods for general bacteriology. Gerhardt, P. (ed.). pp. 66-78. American Society for Microbiology. Washington, DC.
  4. Duke, S. O. 1986. Naturally occuring chemical compounds as herbicides. Rev. Weed Sci. 2: 17-44.
  5. Given, D. R. 1994. Alien plants and feral animal. In IUCN(ed.), Principles and Practice of Plant Conservation. Timber Press, pp. 28-31.
  6. Graham, H. D. 1992. Modified prussian blue assay for total phenol compound. J. Agric. Food Chem. 40: 801-807. https://doi.org/10.1021/jf00017a018
  7. Hazebroek, J. P., S. A. Garrison, and T. Gianfagna. 1989. Allelopathic substances in Asparagus roots : extraction, characterization, and biological activity. J. Amer. Soc. Hort. Sci. 114(1): 152-158.
  8. Heisey, R. M. 1990. Allelopathic and herbicidal effects of extracts from tree of heaven (Ailantus altissima). Amer. J. Bot. 77(5) : 662-670. https://doi.org/10.2307/2444812
  9. Kang, J. H., H. C. Kim, S. B. Woo, J. Y. Song, T. K. Kim, J. Y Kang, Y. S. Ha, and C. K. Song. 2008. Allelopathic Effects of Amaranthus spinosus L. for Improvement of Natural Herbicide. Korean journal of organic agriculture. 16(1): 127-142.
  10. Kil, B. S. 1987. Allelopathic Effects of Pinus densiflora S. et z. The Journal of the natural science. 6(1): 27-33.
  11. Kil, B. S. 1988. Allelopathic Effect of Pinus rigida Mill. Journal of ecology and field biology. 11(2): 65-76.
  12. Kil, B. S. and H. G. Yoo. 1996. Identification and growth inhibition of phytotoxic substances from Artemisia scoparia. Korean J. Ecol. 19(4): 295-304.
  13. Kim, H. C., S. H Ko, T. Kim, and Song C. K. 2008. Allelopathic Effects of Solanum viarum(Dunal). Research Insitute for Hallasan, Jeju Special Self-Governing Province. p. 47-71.
  14. Kim, H. S. and J. H. Kim. 2001. Allelopathic Effects of Volatile Compounds from Ambrosia artemisiifolia Leaves on the Selected Species. Journal of ecology and field biology. 24: 61-66.
  15. Kim, Y. O. and N. K. Chang. 1998. Effects of Aqueous Extracts from Naturalized and Korean Wild Plants on Seed Germination and Seeding Growth of Zoysiagrass. Turfgrass sci. Kor. 12(3): 658-669.
  16. Kim, S. C. and H. J. Lee. 1996. Identification and effects of phenolic compounds from some plants. Korean J. Ecol. 19: 329-340.
  17. Ko, Y. W., J. C. Chae, and Kim B. K. 1999. Distribution of Weed Species in Agricultural Lands of Cheju Island. Weed Sci. Kor. 19(1): 70-82.
  18. Koh, K. S., M. H. Suh, J. Y. Kil, Y. B. Ku, H. K. Oh, S. G. Suh, S. H. Park, and Y. H. Yang. 2003. The Effects of Alien Plants on Ecosystem and Their Management(IV). Report of NIER, Korea. pp. 24-25.
  19. Lee, J. H. 1997. Allelopathic Effects of Extracts of Trifolium repens L. on the Seed Germintion and Seeding Growth of Zoysia japonica Steud. Changwon National university. Master's thesis. pp. 8-10.
  20. Mersie, M. and M. Singh. 1987. Allelopathic effect of Parthenium(Parthenium hysterophorus L.) extract and residue on some agronomic crops and weeds. J. Chem. Ecol. 13(7): 1739-1747. https://doi.org/10.1007/BF00980214
  21. Oh, S. M. 2009. Changes of vegetation distribution of weed on changes in life circumstance. Korean J. Weed Sci. 29(Sup. 2): 16-22.
  22. Pardates, J. R. and A. G. Dingal. 1988. An allelopathic factor in taro residues. Trop. Agric. 65(1): 21-24.
  23. Pyesk, P. 1995. Plant Invasions: General Aspects and Special Problems (Pysek, P. et al. (eds.). Academic Pub., Amsterdam.
  24. Scott, S. J., R. A. Jones, and W. A. Williams, 1984. Review of data analysis methods for seed germination. Crop Science. 24: 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x
  25. Tokarska-Guzik, B. 2001. Plant invasions: species ecology and ecosystem management (Brunda, G. et al.(eds.)), Backhuys Pub., Leiden.
  26. Yang Y. H. 2007. Research Reports : Studies on the Vegetation of Naturalized Plants in Jeju Island. Korean Journal of Weed Science. 27(2): 112-121.