DOI QR코드

DOI QR Code

Examining the Gm18 and $m^1G$ Modification Positions in tRNA Sequences

  • Subramanian, Mayavan (Synthetic Biology and Biofuel Group, International Center for Genetic Engineering and Biotechnology (ICGEB)) ;
  • Srinivasan, Thangavelu (Synthetic Biology and Biofuel Group, International Center for Genetic Engineering and Biotechnology (ICGEB)) ;
  • Sudarsanam, Dorairaj (DST-FIST Bioinformatics and Principal Investigator, School of Genomics and Bioinformatics, Department of Advanced Zoology and Biotechnology, Loyola College)
  • Received : 2013.12.28
  • Accepted : 2014.03.26
  • Published : 2014.06.30

Abstract

The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA $m^1G37$ methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, $m^1G37$ modification was reported to take place on three conserved tRNA subsets ($tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the $m^1G37$ modification. The present study reveals Gm18, $m^1G37$ modification, and positions of $m^1G$ that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the $m^1G$ and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs ($tRNA^{Met}$, $tRNA^{Pro}$, $tRNA^{Val}$). Whereas the $m^1G37$ modification base G is formed only on $tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$, and $tRNA^{His}$, the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and $m^1G$ modification occur irrespective of a G residue in tRNAs.

Keywords

References

  1. Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, et al. Genomic potential of Marinobacter aquaeolei, a biogeochemical "opportunitroph". Appl Environ Microbiol 2011;77:2763-2771. https://doi.org/10.1128/AEM.01866-10
  2. Huu NB, Denner EB, Ha DT, Wanner G, Stan-Lotter H. Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 1999;49(Pt 2):367-375. https://doi.org/10.1099/00207713-49-2-367
  3. Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987;326:655-661. https://doi.org/10.1038/326655a0
  4. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, et al. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 2007;315:666-669. https://doi.org/10.1126/science.1135370
  5. Franco-Rivera A, Paniagua-Michel J, Zamora-Castro J. Characterization and performance of constructed nitrifying biofilms during nitrogen bioremediation of a wastewater effluent. J Ind Microbiol Biotechnol 2007;34:279-287. https://doi.org/10.1007/s10295-006-0196-y
  6. Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, et al. Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 2006;72:6299-6315. https://doi.org/10.1128/AEM.00463-06
  7. Cantara WA, Murphy FV 4th, Demirci H, Agris PF. Expanded use of sense codons is regulated by modified cytidines in tRNA. Proc Natl Acad Sci U S A 2013;110:10964-10969. https://doi.org/10.1073/pnas.1222641110
  8. Gustilo EM, Vendeix FA, Agris PF. tRNA's modifications bring order to gene expression. Curr Opin Microbiol 2008;11:134-140. https://doi.org/10.1016/j.mib.2008.02.003
  9. Novoa EM, Pavon-Eternod M, Pan T, Ribas de Pouplana L. A role for tRNA modifications in genome structure and codon usage. Cell 2012;149:202-213. https://doi.org/10.1016/j.cell.2012.01.050
  10. Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 2004;16:991-1002. https://doi.org/10.1016/j.molcel.2004.11.027
  11. Begley TJ, Samson LD. Network responses to DNA damaging agents. DNA Repair (Amst) 2004;3:1123-1132. https://doi.org/10.1016/j.dnarep.2004.03.013
  12. Rodriguez-Hernandez A, Spears JL, Gaston KW, Limbach PA, Gamper H, Hou YM, et al. Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position. J Mol Biol 2013;425:3888-3906. https://doi.org/10.1016/j.jmb.2013.05.018
  13. Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 1996;85:1077-1088. https://doi.org/10.1016/S0092-8674(00)81308-2
  14. Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 2009;37:D159-D162. https://doi.org/10.1093/nar/gkn772
  15. Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL, Wang AH, et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 1974;185:435-440. https://doi.org/10.1126/science.185.4149.435
  16. Kumagai I, Watanabe K, Oshima T. Thermally induced biosynthesis of 2'-O-methylguanosine in tRNA from an extreme thermophile, Thermus thermophilus HB27. Proc Natl Acad Sci U S A 1980;77:1922-1926. https://doi.org/10.1073/pnas.77.4.1922
  17. Gustafsson C, Reid R, Greene PJ, Santi DV. Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res 1996;24:3756-3762. https://doi.org/10.1093/nar/24.19.3756
  18. Hori H, Yamazaki N, Matsumoto T, Watanabe Y, Ueda T, Nishikawa K, et al. Substrate recognition of tRNA (Guanosine-2'-)-methyltransferase from Thermus thermophilus HB27. J Biol Chem 1998;273:25721-25727. https://doi.org/10.1074/jbc.273.40.25721
  19. Hori H, Kubota S, Watanabe K, Kim JM, Ogasawara T, Sawasaki T, et al. Aquifex aeolicus tRNA (Gm18) methyltransferase has unique substrate specificity. TRNA recognition mechanism of the enzyme. J Biol Chem 2003;278:25081-25090. https://doi.org/10.1074/jbc.M212577200
  20. Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, et al. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. J Biol Chem 2013;288:25562-25574. https://doi.org/10.1074/jbc.M113.485128
  21. Jockel S, Nees G, Sommer R, Zhao Y, Cherkasov D, Hori H, et al. The 2'-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med 2012;209:235-241. https://doi.org/10.1084/jem.20111075
  22. Li JN, Bjork GR. Structural alterations of the tRNA (m1G37)methyltransferase from Salmonella typhimurium affect tRNA substrate specificity. RNA 1999;5:395-408. https://doi.org/10.1017/S1355838299980834
  23. Liu J, Wang W, Shin DH, Yokota H, Kim R, Kim SH. Crystal structure of tRNA (m1G37) methyltransferase from Aquifex aeolicus at 2.6 A resolution: a novel methyltransferase fold. Proteins 2003;53:326-328. https://doi.org/10.1002/prot.10479
  24. Holmes WM, Andraos-Selim C, Roberts I, Wahab SZ. Structural requirements for tRNA methylation: action of Escherichia coli tRNA(guanosine-1)methyltransferase on tRNA (1Leu) structural variants. J Biol Chem 1992;267:13440-13445.
  25. Hagervall TG, Tuohy TM, Atkins JF, Bjork GR. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J Mol Biol 1993;232:756-765. https://doi.org/10.1006/jmbi.1993.1429
  26. Bjork GR, Wikstrom PM, Bystrom AS. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 1989;244:986-989. https://doi.org/10.1126/science.2471265
  27. Lee C, Kramer G, Graham DE, Appling DR. Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase. J Biol Chem 2007;282:27744-27753. https://doi.org/10.1074/jbc.M704572200
  28. Watanabe K, Nureki O, Fukai S, Ishii R, Okamoto H, Yokoyama S, et al. Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family. J Biol Chem 2005;280:10368-10377. https://doi.org/10.1074/jbc.M411209200
  29. GtRNAdb. Genomic tRNA Database, 2011. Accessed 2014 Jan 10. Available from: http://gtrnadb.ucsc.edu/.
  30. BioEdit. Carlsbad: Tom Hall, c1997-2013. Accessed 2014 Jan 15. Available from: http://www.mbio.ncsu.edu/bioedit/bioedit.html.
  31. Srinivasan T, Kumaran K, Selvakumar R, Velmurugan D, Sudarsanam D. Exploring GpG bases next to anticodon in tRNA subsets. Bioinformation 2013;9:466-470. https://doi.org/10.6026/97320630009466
  32. Watanabe K, Nureki O, Fukai S, Endo Y, Hori H. Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes. J Biol Chem 2006;281:34630-34639. https://doi.org/10.1074/jbc.M606141200
  33. Bjork GR, Jacobsson K, Nilsson K, Johansson MJ, Bystrom AS, Persson OP. A primordial tRNA modification required for the evolution of life? EMBO J 2001;20:231-239. https://doi.org/10.1093/emboj/20.1.231
  34. Goto-Ito S, Ito T, Ishii R, Muto Y, Bessho Y, Yokoyama S. Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. Proteins 2008;72:1274-1289. https://doi.org/10.1002/prot.22019
  35. Konevega AL, Soboleva NG, Makhno VI, Semenkov YP, Wintermeyer W, Rodnina MV, et al. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. RNA 2004;10:90-101. https://doi.org/10.1261/rna.5142404

Cited by

  1. The modified base isopentenyladenosine and its derivatives in tRNA vol.14, pp.9, 2017, https://doi.org/10.1080/15476286.2017.1294309
  2. RNA Modifications Modulate Activation of Innate Toll-Like Receptors vol.10, pp.2, 2019, https://doi.org/10.3390/genes10020092