DOI QR코드

DOI QR Code

Mouse Models of Gastric Carcinogenesis

  • Yu, Sungsook (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Yang, Mijeong (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Nam, Ki Taek (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine)
  • Received : 2014.03.13
  • Accepted : 2014.04.29
  • Published : 2014.06.30

Abstract

Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field.

Keywords

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893-2917. https://doi.org/10.1002/ijc.25516
  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90. https://doi.org/10.3322/caac.20107
  3. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965;64:31-49.
  4. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 1992;52:6735-6740.
  5. Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 2003;3:592-600. https://doi.org/10.1038/nrc1141
  6. Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2002;2:777-785. https://doi.org/10.1038/nrc907
  7. Kawase S, Ishikura H. Female-predominant occurrence of spontaneous gastric adenocarcinoma in cotton rats. Lab Anim Sci 1995;45:244-248.
  8. Waldum HL, Rorvik H, Falkmer S, Kawase S. Neuroendocrine (ECL cell) differentiation of spontaneous gastric carcinomas of cotton rats (Sigmodon hispidus). Lab Anim Sci 1999;49:241-247.
  9. Cui G, Qvigstad G, Falkmer S, Sandvik AK, Kawase S, Waldum HL. Spontaneous ECLomas in cotton rats (Sigmodon hispidus): tumours occurring in hypoacidic/hypergastrinaemic animals with normal parietal cells. Carcinogenesis 2000;21:23-27. https://doi.org/10.1093/carcin/21.1.23
  10. Koga T, Takahashi K, Sato K, Kikuchi I, Okazaki Y, Miura T, et al. The effect of colonisation by Helicobacter pylori in Praomys (Mastomys) natalensis on the incidence of carcinoids. J Med Microbiol 2002;51:777-785. https://doi.org/10.1099/0022-1317-51-9-777
  11. Kumazawa H, Takagi H, Sudo K, Nakamura W, Hosoda S. Adenocarcinoma and carcinoid developing spontaneously in the stomach of mutant strains of mastomys natalensis. Virchows Arch A Pathol Anat Histopathol 1989;416:141-151. https://doi.org/10.1007/BF01606319
  12. Schoental R. Carcinogenic activity of N-methyl-N-nitroso-N'-nitroguanidine. Nature 1966;209:726-727. https://doi.org/10.1038/209726a0
  13. Sugimura T, Fujimura S. Tumour production in glandular stomach of rat by N-methyl-N'-nitro-N-nitrosoguanidine. Nature 1967;216:943-944. https://doi.org/10.1038/216943a0
  14. Ohgaki H, Kawachi T, Matsukura N, Morino K, Miyamoto M, Sugimura T. Genetic control of susceptibility of rats to gastric carcinoma. Cancer Res 1983;43:3663-3667.
  15. Tatematsu M, Yamamoto M, Shimizu N, Yoshikawa A, Fukami H, Kaminishi M, et al. Induction of glandular stomach cancers in Helicobacter pylori-sensitive Mongolian gerbils treated with N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine in drinking water. Jpn J Cancer Res 1998;89:97-104. https://doi.org/10.1111/j.1349-7006.1998.tb00535.x
  16. Danon SJ, Eaton KA. The role of gastric Helicobacter and N-methyl-N'-nitro-N-nitrosoguanidine in carcinogenesis of mice. Helicobacter 1998;3:260-268. https://doi.org/10.1046/j.1523-5378.1998.08017.x
  17. Tatematsu M, Ogawa K, Hoshiya T, Shichino Y, Kato T, Imaida K, et al. Induction of adenocarcinomas in the glandular stomach of BALB/c mice treated with N-methyl-N-nitrosourea. Jpn J Cancer Res 1992;83:915-918. https://doi.org/10.1111/j.1349-7006.1992.tb01999.x
  18. Tatematsu M, Yamamoto M, Iwata H, Fukami H, Yuasa H, Tezuka N, et al. Induction of glandular stomach cancers in C3H mice treated with N-methyl-N-nitrosourea in the drinking water. Jpn J Cancer Res 1993;84:1258-1264. https://doi.org/10.1111/j.1349-7006.1993.tb02831.x
  19. Yamachika T, Nakanishi H, Inada K, Tsukamoto T, Shimizu N, Kobayashi K, et al. N-methyl-N-nitrosourea concentration-dependent, rather than total intake-dependent, induction of adenocarcinomas in the glandular stomach of BALB/c mice. Jpn J Cancer Res 1998;89:385-391. https://doi.org/10.1111/j.1349-7006.1998.tb00575.x
  20. Yamamoto M, Furihata C, Ogiu T, Tsukamoto T, Inada Ki, Hirano K, et al. Independent variation in susceptibilities of six different mouse strains to induction of pepsinogen-altered pyloric glands and gastric tumor intestinalization by N-methyl-N-nitrosourea. Cancer Lett 2002;179:121-132. https://doi.org/10.1016/S0304-3835(02)00013-7
  21. Hayakawa Y, Fox JG, Gonda T, Worthley DL, Muthupalani S, Wang TC. Mouse models of gastric cancer. Cancers (Basel) 2013;5:92-130. https://doi.org/10.3390/cancers5010092
  22. Yamamoto M, Tsukamoto T, Sakai H, Shirai N, Ohgaki H, Furihata C, et al. p53 knockout mice (-/-) are more susceptible than (+/-) or (+/+) mice to N-methyl-N-nitrosourea stomach carcinogenesis. Carcinogenesis 2000;21:1891-1897. https://doi.org/10.1093/carcin/21.10.1891
  23. Sakamoto K, Hikiba Y, Nakagawa H, Hayakawa Y, Yanai A, Akanuma M, et al. Inhibitor of kappaB kinase beta regulates gastric carcinogenesis via interleukin-1alpha expression. Gastroenterology 2010;139:226-238. https://doi.org/10.1053/j.gastro.2010.03.047
  24. Shibata W, Maeda S, Hikiba Y, Yanai A, Sakamoto K, Nakagawa H, et al. c-Jun NH2-terminal kinase 1 is a critical regulator for the development of gastric cancer in mice. Cancer Res 2008;68:5031-5039. https://doi.org/10.1158/0008-5472.CAN-07-6332
  25. Hayakawa Y, Hirata Y, Nakagawa H, Sakamoto K, Hikiba Y, Kinoshita H, et al. Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. Proc Natl Acad Sci U S A 2011;108:780-785. https://doi.org/10.1073/pnas.1011418108
  26. Takasu S, Tsukamoto T, Cao XY, Toyoda T, Hirata A, Ban H, et al. Roles of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression and beta-catenin activation in gastric carcinogenesis in N-methyl-N-nitrosourea-treated K19-C2mE transgenic mice. Cancer Sci 2008;99:2356-2364. https://doi.org/10.1111/j.1349-7006.2008.00983.x
  27. Leung WK, Wu KC, Wong CY, Cheng AS, Ching AK, Chan AW, et al. Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis 2008;29:1648-1654. https://doi.org/10.1093/carcin/bgn156
  28. Humar B, Blair V, Charlton A, More H, Martin I, Guilford P. E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res 2009;69:2050-2056.
  29. Li Q, Jia Z, Wang L, Kong X, Li Q, Guo K, et al. Disruption of Klf4 in villin-positive gastric progenitor cells promotes formation and progression of tumors of the antrum in mice. Gastroenterology 2012;142:531-542. https://doi.org/10.1053/j.gastro.2011.11.034
  30. Boffa LC, Bolognesi C. Methylating agents: their target amino acids in nuclear proteins. Carcinogenesis 1985;6:1399-1401. https://doi.org/10.1093/carcin/6.9.1399
  31. Tomita H, Takaishi S, Menheniott TR, Yang X, Shibata W, Jin G, et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 2011;140:879-891. https://doi.org/10.1053/j.gastro.2010.11.037
  32. Cao X, Tsukamoto T, Nozaki K, Tanaka H, Shimizu N, Kaminishi M, et al. Earlier Helicobacter pylori infection increases the risk for the N-methyl-N-nitrosourea-induced stomach carcinogenesis in Mongolian gerbils. Jpn J Cancer Res 2002;93:1293-1298. https://doi.org/10.1111/j.1349-7006.2002.tb01237.x
  33. Maruta F, Sugiyama A, Ishida K, Ikeno T, Murakami M, Kawasaki S, et al. Timing of N-methyl-N-nitrosourea administration affects gastric carcinogenesis in Mongolian gerbils infected with Helicobacter pylori. Cancer Lett 2000;160:99-105. https://doi.org/10.1016/S0304-3835(00)00571-1
  34. Fox JG, Wishnok JS, Murphy JC, Tannenbaum SR, Correa P. MNNG-induced gastric carcinoma in ferrets infected with Helicobacter mustelae. Carcinogenesis 1993;14:1957-1961. https://doi.org/10.1093/carcin/14.9.1957
  35. Fox JG. Gastric disease in ferrets: effects of Helicobacter mustelae, nitrosamines and reconstructive gastric surgery. Eur J Gastroenterol Hepatol 1994;6 Suppl 1:S57-S65.
  36. Fox JG, Dangler CA, Sager W, Borkowski R, Gliatto JM. Helicobacter mustelae-associated gastric adenocarcinoma in ferrets (Mustela putorius furo). Vet Pathol 1997;34:225-229. https://doi.org/10.1177/030098589703400308
  37. Fox JG, Correa P, Taylor NS, Lee A, Otto G, Murphy JC, et al. Helicobacter mustelae-associated gastritis in ferrets. An animal model of Helicobacter pylori gastritis in humans. Gastroenterology 1990;99:352-361. https://doi.org/10.1016/0016-5085(90)91016-Y
  38. Wirth HP, Beins MH, Yang M, Tham KT, Blaser MJ. Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect Immun 1998;66:4856-4866.
  39. Ogura K, Maeda S, Nakao M, Watanabe T, Tada M, Kyutoku T, et al. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J Exp Med 2000;192:1601-1610. https://doi.org/10.1084/jem.192.11.1601
  40. Israel DA, Salama N, Arnold CN, Moss SF, Ando T, Wirth HP, et al. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest 2001;107:611-620. https://doi.org/10.1172/JCI11450
  41. Ehlers S, Warrelmann M, Hahn H. In search of an animal model for experimental Campylobacter pylori infection: administration of Campylobacter pylori to rodents. Zentralbl Bakteriol Mikrobiol Hyg A 1988;268:341-346.
  42. Cantorna MT, Balish E. Inability of human clinical strains of Helicobacter pylori to colonize the alimentary tract of germfree rodents. Can J Microbiol 1990;36:237-241. https://doi.org/10.1139/m90-041
  43. Lee A, Fox JG, Otto G, Murphy J. A small animal model of human Helicobacter pylori active chronic gastritis. Gastroenterology 1990;99:1315-1323. https://doi.org/10.1016/0016-5085(90)91156-Z
  44. Lee A, Chen M, Coltro N, O'Rourke J, Hazell S, Hu P, et al. Long term infection of the gastric mucosa with Helicobacter species does induce atrophic gastritis in an animal model of Helicobacter pylori infection. Zentralbl Bakteriol 1993;280:38-50. https://doi.org/10.1016/S0934-8840(11)80939-4
  45. Sakagami T, Dixon M, O'Rourke J, Howlett R, Alderuccio F, Vella J, et al. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis. Gut 1996;39:639-648. https://doi.org/10.1136/gut.39.5.639
  46. Fox JG, Sheppard BJ, Dangler CA, Whary MT, Ihrig M, Wang TC. Germ-line p53-targeted disruption inhibits helicobacter-induced premalignant lesions and invasive gastric carcinoma through down-regulation of Th1 proinflammatory responses. Cancer Res 2002;62:696-702.
  47. Wang TC, Goldenring JR, Dangler C, Ito S, Mueller A, Jeon WK, et al. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology 1998;114:675-689. https://doi.org/10.1016/S0016-5085(98)70581-5
  48. Stoicov C, Saffari R, Cai X, Hasyagar C, Houghton J. Molecular biology of gastric cancer: Helicobacter infection and gastric adenocarcinoma: bacterial and host factors responsible for altered growth signaling. Gene 2004;341:1-17. https://doi.org/10.1016/j.gene.2004.07.023
  49. Rogers AB, Taylor NS, Whary MT, Stefanich ED, Wang TC, Fox JG. Helicobacter pylori but not high salt induces gastric intraepithelial neoplasia in B6129 mice. Cancer Res 2005;65:10709-10715. https://doi.org/10.1158/0008-5472.CAN-05-1846
  50. Cai X, Carlson J, Stoicov C, Li H, Wang TC, Houghton J. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology 2005;128:1937-1952. https://doi.org/10.1053/j.gastro.2005.02.066
  51. Lee CW, Rickman B, Rogers AB, Ge Z, Wang TC, Fox JG. Helicobacter pylori eradication prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res 2008;68:3540-3548. https://doi.org/10.1158/0008-5472.CAN-07-6786
  52. Sepulveda AR, Coelho LG. Helicobacter pylori and gastric malignancies. Helicobacter 2002;7 Suppl 1:37-42. https://doi.org/10.1046/j.1523-5378.7.s1.6.x
  53. Ley C, Mohar A, Guarner J, Herrera-Goepfert R, Figueroa LS, Halperin D, et al. Helicobacter pylori eradication and gastric preneoplastic conditions: a randomized, double-blind, placebo-controlled trial. Cancer Epidemiol Biomarkers Prev 2004;13:4-10. https://doi.org/10.1158/1055-9965.EPI-03-0124
  54. Lee CW, Rickman B, Rogers AB, Muthupalani S, Takaishi S, Yang P, et al. Combination of sulindac and antimicrobial eradication of Helicobacter pylori prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res 2009;69:8166-8174. https://doi.org/10.1158/0008-5472.CAN-08-3856
  55. Lee A, O'Rourke J, De Ungria MC, Robertson B, Daskalopoulos G, Dixon MF. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology 1997;112:1386-1397. https://doi.org/10.1016/S0016-5085(97)70155-0
  56. Wang X, Willen R, Svensson M, Ljungh A, Wadstrom T. Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice. APMIS 2003;111:514-522. https://doi.org/10.1034/j.1600-0463.2003.1110410.x
  57. Fox JG, Wang TC, Rogers AB, Poutahidis T, Ge Z, Taylor N, et al. Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology 2003;124:1879-1890. https://doi.org/10.1016/S0016-5085(03)00406-2
  58. Lee K, Hwang H, Nam KT. Immune response and the tumor microenvironment: how they communicate to regulate gastric cancer. Gut Liver 2014;8:131-139. https://doi.org/10.5009/gnl.2014.8.2.131
  59. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 2002;295:683-686. https://doi.org/10.1126/science.1067147
  60. Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y, et al. H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology 2000;119:97-108. https://doi.org/10.1053/gast.2000.8540
  61. Mitsuno Y, Yoshida H, Maeda S, Ogura K, Hirata Y, Kawabe T, et al. Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut 2001;49:18-22. https://doi.org/10.1136/gut.49.1.18
  62. Shimizu N, Kaminishi M, Tatematsu M, Tsuji E, Yoshikawa A, Yamaguchi H, et al. Helicobacter pylori promotes development of pepsinogen-altered pyloric glands, a preneoplastic lesion of glandular stomach of BALB/c mice pretreated with N-methyl-N-nitrosourea. Cancer Lett 1998;123:63-69. https://doi.org/10.1016/S0304-3835(97)00405-9
  63. Han SU, Kim YB, Joo HJ, Hahm KB, Lee WH, Cho YK, et al. Helicobacter pylori infection promotes gastric carcinogenesis in a mice model. J Gastroenterol Hepatol 2002;17:253-261. https://doi.org/10.1046/j.1440-1746.2002.02684.x
  64. Fox JG, Dangler CA, Taylor NS, King A, Koh TJ, Wang TC. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice. Cancer Res 1999;59:4823-4828.
  65. Fox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN, et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med 2000;6:536-542. https://doi.org/10.1038/75015
  66. Nam KT, Hahm KB, Oh SY, Yeo M, Han SU, Ahn B, et al. The selective cyclooxygenase-2 inhibitor nimesulide prevents Helicobacter pylori-associated gastric cancer development in a mouse model. Clin Cancer Res 2004;10:8105-8113. https://doi.org/10.1158/1078-0432.CCR-04-0896
  67. Nam KT, Oh SY, Ahn B, Kim YB, Jang DD, Yang KH, et al. Decreased Helicobacter pylori associated gastric carcinogenesis in mice lacking inducible nitric oxide synthase. Gut 2004;53:1250-1255. https://doi.org/10.1136/gut.2003.030684
  68. Ito K, Chuang LS, Ito T, Chang TL, Fukamachi H, Salto-Tellez M, et al. Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology 2011;140:1536-1546.e8. https://doi.org/10.1053/j.gastro.2011.01.043
  69. Thompson J, Epting T, Schwarzkopf G, Singhofen A, Eades-Perner AM, van Der Putten H, et al. A transgenic mouse line that develops early-onset invasive gastric carcinoma provides a model for carcinoembryonic antigen-targeted tumor therapy. Int J Cancer 2000;86:863-869. https://doi.org/10.1002/(SICI)1097-0215(20000615)86:6<863::AID-IJC16>3.0.CO;2-4
  70. Koike K, Hinrichs SH, Isselbacher KJ, Jay G. Transgenic mouse model for human gastric carcinoma. Proc Natl Acad Sci U S A 1989;86:5615-5619. https://doi.org/10.1073/pnas.86.14.5615
  71. Searle PF, Thomas DP, Faulkner KB, Tinsley JM. Stomach cancer in transgenic mice expressing human papillomavirus type 16 early region genes from a keratin promoter. J Gen Virol 1994;75:1125-1137. https://doi.org/10.1099/0022-1317-75-5-1125
  72. Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, et al. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 1996;274:259-262. https://doi.org/10.1126/science.274.5285.259
  73. Tomasetto C, Rio MC. Pleiotropic effects of Trefoil factor 1 deficiency. Cell Mol Life Sci 2005;62:2916-2920. https://doi.org/10.1007/s00018-005-5479-3
  74. Johnson AH, Frierson HF, Zaika A, Powell SM, Roche J, Crowe S, et al. Expression of tight-junction protein claudin-7 is an early event in gastric tumorigenesis. Am J Pathol 2005;167:577-584. https://doi.org/10.1016/S0002-9440(10)62999-9
  75. Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med 2002;8:1089-1097. https://doi.org/10.1038/nm763
  76. Judd LM, Alderman BM, Howlett M, Shulkes A, Dow C, Moverley J, et al. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 2004;126:196-207. https://doi.org/10.1053/j.gastro.2003.10.066
  77. Jenkins BJ, Grail D, Nheu T, Najdovska M, Wang B, Waring P, et al. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nat Med 2005;11:845-852. https://doi.org/10.1038/nm1282
  78. Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I, Honda S, et al. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun 2002;294:470-479. https://doi.org/10.1016/S0006-291X(02)00480-1
  79. Mutoh H, Sakurai S, Satoh K, Osawa H, Hakamata Y, Takeuchi T, et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut 2004;53:1416-1423. https://doi.org/10.1136/gut.2003.032482
  80. Mutoh H, Sakurai S, Satoh K, Tamada K, Kita H, Osawa H, et al. Development of gastric carcinoma from intestinal metaplasia in Cdx2-transgenic mice. Cancer Res 2004;64:7740-7747. https://doi.org/10.1158/0008-5472.CAN-04-1617
  81. Wang TC, Dangler CA, Chen D, Goldenring JR, Koh T, Raychowdhury R, et al. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 2000;118:36-47. https://doi.org/10.1016/S0016-5085(00)70412-4
  82. El-Zaatari M, Tobias A, Grabowska AM, Kumari R, Scotting PJ, Kaye P, et al. De-regulation of the sonic hedgehog pathway in the InsGas mouse model of gastric carcinogenesis. Br J Cancer 2007;96:1855-1861. https://doi.org/10.1038/sj.bjc.6603782
  83. Konda Y, Kamimura H, Yokota H, Hayashi N, Sugano K, Takeuchi T. Gastrin stimulates the growth of gastric pit with less-differentiated features. Am J Physiol 1999;277:G773-G784.
  84. Kanda N, Seno H, Kawada M, Sawabu T, Uenoyoma Y, Nakajima T, et al. Involvement of cyclooxygenase-2 in gastric mucosal hypertrophy in gastrin transgenic mice. Am J Physiol Gastrointest Liver Physiol 2006;290:G519-G527. https://doi.org/10.1152/ajpgi.00113.2005
  85. Friis-Hansen L, Sundler F, Li Y, Gillespie PJ, Saunders TL, Greenson JK, et al. Impaired gastric acid secretion in gastrin-deficient mice. Am J Physiol 1998;274:G561-G568.
  86. Koh TJ, Goldenring JR, Ito S, Mashimo H, Kopin AS, Varro A, et al. Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice. Gastroenterology 1997;113:1015-1025. https://doi.org/10.1016/S0016-5085(97)70199-9
  87. Zavros Y, Rieder G, Ferguson A, Samuelson LC, Merchant JL. Genetic or chemical hypochlorhydria is associated with inflammation that modulates parietal and G-cell populations in mice. Gastroenterology 2002;122:119-133. https://doi.org/10.1053/gast.2002.30298
  88. Zavros Y, Eaton KA, Kang W, Rathinavelu S, Katukuri V, Kao JY, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 2005;24:2354-2366. https://doi.org/10.1038/sj.onc.1208407
  89. Goldenring JR, Nomura S. Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia. Am J Physiol Gastrointest Liver Physiol 2006;291:G999-G1004. https://doi.org/10.1152/ajpgi.00187.2006
  90. Kang W, Rathinavelu S, Samuelson LC, Merchant JL. Interferon gamma induction of gastric mucous neck cell hypertrophy. Lab Invest 2005;85:702-715. https://doi.org/10.1038/labinvest.3700260
  91. Judd LM, Andringa A, Rubio CA, Spicer Z, Shull GE, Miller ML. Gastric achlorhydria in H/K-ATPase-deficient (Atp4a(-/-)) mice causes severe hyperplasia, mucocystic metaplasia and upregulation of growth factors. J Gastroenterol Hepatol 2005;20:1266-1278. https://doi.org/10.1111/j.1440-1746.2005.03867.x
  92. Schultheis PJ, Clarke LL, Meneton P, Harline M, Boivin GP, Stemmermann G, et al. Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest 1998;101:1243-1253. https://doi.org/10.1172/JCI1249
  93. Gawenis LR, Greeb JM, Prasad V, Grisham C, Sanford LP, Doetschman T, et al. Impaired gastric acid secretion in mice with a targeted disruption of the NHE4 Na+/H+ exchanger. J Biol Chem 2005;280:12781-12789. https://doi.org/10.1074/jbc.M414118200
  94. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 2000;106:1447-1455. https://doi.org/10.1172/JCI10897
  95. Elso CM, Lu X, Culiat CT, Rutledge JC, Cacheiro NL, Generoso WM, et al. Heightened susceptibility to chronic gastritis, hyperplasia and metaplasia in Kcnq1 mutant mice. Hum Mol Genet 2004;13:2813-2821. https://doi.org/10.1093/hmg/ddh307
  96. Kobayashi T, Tonai S, Ishihara Y, Koga R, Okabe S, Watanabe T. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J Clin Invest 2000;105:1741-1749. https://doi.org/10.1172/JCI9441
  97. Ogawa T, Maeda K, Tonai S, Kobayashi T, Watanabe T, Okabe S. Utilization of knockout mice to examine the potential role of gastric histamine H2-receptors in Menetrier's disease. J Pharmacol Sci 2003;91:61-70. https://doi.org/10.1254/jphs.91.61
  98. Li S, Wang Q, Chakladar A, Bronson RT, Bernards A. Gastric hyperplasia in mice lacking the putative Cdc42 effector IQGAP1. Mol Cell Biol 2000;20:697-701. https://doi.org/10.1128/MCB.20.2.697-701.2000
  99. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 1998;93:1159-1170. https://doi.org/10.1016/S0092-8674(00)81460-9
  100. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359:693-699. https://doi.org/10.1038/359693a0
  101. Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006;441:1015-1019. https://doi.org/10.1038/nature04846
  102. Redman RS, Katuri V, Tang Y, Dillner A, Mishra B, Mishra L. Orofacial and gastrointestinal hyperplasia and neoplasia in smad4+/- and elf+/-/smad4+/- mutant mice. J Oral Pathol Med 2005;34:23-29. https://doi.org/10.1111/j.1600-0714.2004.00246.x
  103. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue Ki, Chi XZ, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 2002;109:113-124. https://doi.org/10.1016/S0092-8674(02)00690-6
  104. Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 2002;21:3454-3463. https://doi.org/10.1093/emboj/cdf370
  105. Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E, et al. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci U S A 2004;101:16016-16021. https://doi.org/10.1073/pnas.0407180101
  106. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 1999;18:5931-5942. https://doi.org/10.1093/emboj/18.21.5931
  107. Romagnolo B, Berrebi D, Saadi-Keddoucci S, Porteu A, Pichard AL, Peuchmaur M, et al. Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated beta-catenin. Cancer Res 1999;59:3875-3879.
  108. Yang K, Edelmann W, Fan K, Lau K, Kolli VR, Fodde R, et al. A mouse model of human familial adenomatous polyposis. J Exp Zool 1997;277:245-254. https://doi.org/10.1002/(SICI)1097-010X(19970215)277:3<245::AID-JEZ5>3.0.CO;2-O
  109. Fox JG, Dangler CA, Whary MT, Edelman W, Kucherlapati R, Wang TC. Mice carrying a truncated Apc gene have diminished gastric epithelial proliferation, gastric inflammation, and humoral immunity in response to Helicobacter felis infection. Cancer Res 1997;57:3972-3978.
  110. Tomita H, Yamada Y, Oyama T, Hata K, Hirose Y, Hara A, et al. Development of gastric tumors in Apc(Min/+) mice by the activation of the beta-catenin/Tcf signaling pathway. Cancer Res 2007;67:4079-4087. https://doi.org/10.1158/0008-5472.CAN-06-4025
  111. Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci U S A 2001;98:11456-11461. https://doi.org/10.1073/pnas.191086798
  112. Cai JP, Ishibashi T, Takagi Y, Hayakawa H, Sekiguchi M. Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides. Biochem Biophys Res Commun 2003;305:1073-1077. https://doi.org/10.1016/S0006-291X(03)00864-7
  113. Oshima H, Oshima M, Inaba K, Taketo MM. Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J 2004;23:1669-1678. https://doi.org/10.1038/sj.emboj.7600170
  114. Oshima M, Oshima H, Matsunaga A, Taketo MM. Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res 2005;65:9147-9151. https://doi.org/10.1158/0008-5472.CAN-05-1936
  115. Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology 2006;131:1086-1095. https://doi.org/10.1053/j.gastro.2006.07.014
  116. Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H, et al. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 1998;101:982-992. https://doi.org/10.1172/JCI1684
  117. Ludlow A, Yee KO, Lipman R, Bronson R, Weinreb P, Huang X, et al. Characterization of integrin beta6 and thrombospondin-1 double-null mice. J Cell Mol Med 2005;9:421-437. https://doi.org/10.1111/j.1582-4934.2005.tb00367.x
  118. Dempsey PJ, Goldenring JR, Soroka CJ, Modlin IM, McClure RW, Lind CD, et al. Possible role of transforming growth factor alpha in the pathogenesis of Menetrier's disease: supportive evidence form humans and transgenic mice. Gastroenterology 1992;103:1950-1963. https://doi.org/10.1016/0016-5085(92)91455-D
  119. Takagi H, Jhappan C, Sharp R, Merlino G. Hypertrophic gastropathy resembling Menetrier's disease in transgenic mice overexpressing transforming growth factor alpha in the stomach. J Clin Invest 1992;90:1161-1167. https://doi.org/10.1172/JCI115936
  120. Bockman DE, Sharp R, Merlino G. Regulation of terminal differentiation of zymogenic cells by transforming growth factor alpha in transgenic mice. Gastroenterology 1995;108:447-454. https://doi.org/10.1016/0016-5085(95)90073-X
  121. Goldenring JR, Ray GS, Soroka CJ, Smith J, Modlin IM, Meise KS, et al. Overexpression of transforming growth factor-alpha alters differentiation of gastric cell lineages. Dig Dis Sci 1996;41:773-784. https://doi.org/10.1007/BF02213134
  122. Sharp R, Babyatsky MW, Takagi H, Tagerud S, Wang TC, Bockman DE, et al. Transforming growth factor alpha disrupts the normal program of cellular differentiation in the gastric mucosa of transgenic mice. Development 1995;121:149-161.
  123. Takagi H, Fukusato T, Kawaharada U, Kuboyama S, Merlino G, Tsutsumi Y. Histochemical analysis of hyperplastic stomach of TGF-alpha transgenic mice. Dig Dis Sci 1997;42:91-98. https://doi.org/10.1023/A:1018837121947
  124. Nomura S, Settle SH, Leys CM, Means AL, Peek RM Jr, Leach SD, et al. Evidence for repatterning of the gastric fundic epithelium associated with Menetrier's disease and TGFalpha overexpression. Gastroenterology 2005;128:1292-1305. https://doi.org/10.1053/j.gastro.2005.03.019
  125. Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S, et al. A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci U S A 2002;99:9990-9995. https://doi.org/10.1073/pnas.152706299
  126. Kuznetsov NV, Andersson P, Gradin K, Stein PV, Dieckmann A, Pettersson S, et al. The dioxin/aryl hydrocarbon receptor mediates downregulation of osteopontin gene expression in a mouse model of gastric tumourigenesis. Oncogene 2005;24:3216-3222. https://doi.org/10.1038/sj.onc.1208529
  127. Segre JA, Bauer C, Fuchs E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 1999;22:356-360. https://doi.org/10.1038/11926
  128. Katz JP, Perreault N, Goldstein BG, Actman L, McNally SR, Silberg DG, et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 2005;128:935-945. https://doi.org/10.1053/j.gastro.2005.02.022
  129. Kuzushita N, Rogers AB, Monti NA, Whary MT, Park MJ, Aswad BI, et al. p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice. Gastroenterology 2005;129:1544-1556. https://doi.org/10.1053/j.gastro.2005.07.056
  130. Fukui T, Nishio A, Okazaki K, Uza N, Ueno S, Kido M, et al. Gastric mucosal hyperplasia via upregulation of gastrin induced by persistent activation of gastric innate immunity in major histocompatibility complex class II deficient mice. Gut 2006;55:607-615. https://doi.org/10.1136/gut.2005.077917
  131. Gut MO, Parkkila S, Vernerova Z, Rohde E, Zavada J, Hocker M, et al. Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9. Gastroenterology 2002;123:1889-1903. https://doi.org/10.1053/gast.2002.37052
  132. Leppilampi M, Karttunen TJ, Kivela J, Gut MO, Pastorekova S, Pastorek J, et al. Gastric pit cell hyperplasia and glandular atrophy in carbonic anhydrase IX knockout mice: studies on two strains C57/BL6 and BALB/C. Transgenic Res 2005;14:655-663. https://doi.org/10.1007/s11248-005-7215-z
  133. Nockel J, van den Engel NK, Winter H, Hatz RA, Zimmermann W, Kammerer R. Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigentransgenic mice with or without a human CEA transgene. BMC Cancer 2006;6:57. https://doi.org/10.1186/1471-2407-6-57
  134. Li Q, Karam SM, Gordon JI. Simian virus 40 T antigen-induced amplification of pre-parietal cells in transgenic mice. Effects on other gastric epithelial cell lineages and evidence for a p53-independent apoptotic mechanism that operates in a committed progenitor. J Biol Chem 1995;270:15777-15788. https://doi.org/10.1074/jbc.270.26.15777
  135. Syder AJ, Karam SM, Mills JC, Ippolito JE, Ansari HR, Farook V, et al. A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype. Proc Natl Acad Sci U S A 2004;101:4471-4476. https://doi.org/10.1073/pnas.0307983101
  136. Stewart LA, van Driel IR, Gleeson PA. Perturbation of gastric mucosa in mice expressing the temperature-sensitive mutant of SV40 large T antigen. Potential for establishment of an immortalised parietal cell line. Eur J Cell Biol 2002;81:281-293. https://doi.org/10.1078/0171-9335-00249
  137. Kaestner KH, Silberg DG, Traber PG, Schutz G. The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev 1997;11:1583-1595. https://doi.org/10.1101/gad.11.12.1583
  138. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 2000;127:2763-2772.
  139. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000;11:4131-4142. https://doi.org/10.1091/mbc.11.12.4131
  140. Hopken UE, Wengner AM, Loddenkemper C, Stein H, Heimesaat MM, Rehm A, et al. CCR7 deficiency causes ectopic lymphoid neogenesis and disturbed mucosal tissue integrity. Blood 2007;109:886-895.
  141. Ishikawa H, Carrasco D, Claudio E, Ryseck RP, Bravo R. Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med 1997;186:999-1014. https://doi.org/10.1084/jem.186.7.999
  142. Friis-Hansen L. Gastric functions in gastrin gene knock-out mice. Pharmacol Toxicol 2002;91:363-367. https://doi.org/10.1034/j.1600-0773.2002.910614.x
  143. Watson SA, Grabowska AM, El-Zaatari M, Takhar A. Gastrin-active participant or bystander in gastric carcinogenesis? Nat Rev Cancer 2006;6:936-946. https://doi.org/10.1038/nrc2014
  144. Wang TC, Bonner-Weir S, Oates PS, Chulak M, Simon B, Merlino GT, et al. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest 1993;92:1349-1356. https://doi.org/10.1172/JCI116708
  145. Wang TC, Koh TJ, Varro A, Cahill RJ, Dangler CA, Fox JG, et al. Processing and proliferative effects of human progastrin in transgenic mice. J Clin Invest 1996;98:1918-1929. https://doi.org/10.1172/JCI118993
  146. Takaishi S, Cui G, Frederick DM, Carlson JE, Houghton J, Varro A, et al. Synergistic inhibitory effects of gastrin and histamine receptor antagonists on Helicobacter-induced gastric cancer. Gastroenterology 2005;128:1965-1983. https://doi.org/10.1053/j.gastro.2005.03.027
  147. Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B, et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 2001;34:519-522. https://doi.org/10.1053/jhep.2001.26751
  148. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117-129. https://doi.org/10.1038/ng1001-117
  149. Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, et al. Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther 2002;16 Suppl 2:115-127.
  150. Fox JG, Li X, Cahill RJ, Andrutis K, Rustgi AK, Odze R, et al. Hypertrophic gastropathy in Helicobacter felis-infected wildtype C57BL/6 mice and p53 hemizygous transgenic mice. Gastroenterology 1996;110:155-166. https://doi.org/10.1053/gast.1996.v110.pm8536852
  151. Li Q, Karam SM, Gordon JI. Diphtheria toxin-mediated ablation of parietal cells in the stomach of transgenic mice. J Biol Chem 1996;271:3671-3676. https://doi.org/10.1074/jbc.271.7.3671
  152. Canfield V, West AB, Goldenring JR, Levenson R. Genetic ablation of parietal cells in transgenic mice: a new model for analyzing cell lineage relationships in the gastric mucosa. Proc Natl Acad Sci U S A 1996;93:2431-2435. https://doi.org/10.1073/pnas.93.6.2431
  153. Spicer Z, Miller ML, Andringa A, Riddle TM, Duffy JJ, Doetschman T, et al. Stomachs of mice lacking the gastric H,K-ATPase alpha -subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem 2000;275:21555-21565. https://doi.org/10.1074/jbc.M001558200
  154. Scarff KL, Judd LM, Toh BH, Gleeson PA, Van Driel IR. Gastric H(+),K(+)-adenosine triphosphatase beta subunit is required for normal function, development, and membrane structure of mouse parietal cells. Gastroenterology 1999;117:605-618. https://doi.org/10.1016/S0016-5085(99)70453-1
  155. Franic TV, Judd LM, Robinson D, Barrett SP, Scarff KL, Gleeson PA, et al. Regulation of gastric epithelial cell development revealed in H(+)/K(+)-ATPase beta-subunit- and gastrin-deficient mice. Am J Physiol Gastrointest Liver Physiol 2001;281:G1502-G1511. https://doi.org/10.1152/ajpgi.2001.281.6.G1502
  156. Nagata A, Ito M, Iwata N, Kuno J, Takano H, Minowa O, et al. G protein-coupled cholecystokinin-B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo. Proc Natl Acad Sci U S A 1996;93:11825-11830. https://doi.org/10.1073/pnas.93.21.11825
  157. Langhans N, Rindi G, Chiu M, Rehfeld JF, Ardman B, Beinborn M, et al. Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice. Gastroenterology 1997;112:280-286. https://doi.org/10.1016/S0016-5085(97)90000-7
  158. Xiao C, Ogle SA, Schumacher MA, Orr-Asman MA, Miller ML, Lertkowit N, et al. Loss of parietal cell expression of Sonic hedgehog induces hypergastrinemia and hyperproliferation of surface mucous cells. Gastroenterology 2010;138:550-561.e1-8. https://doi.org/10.1053/j.gastro.2009.11.002
  159. Goldenring JR, Ray GS, Coffey RJ, Meunier PC, Haley PJ, Barnes TB, et al. Reversible drug-induced oxyntic atrophy in rats. Gastroenterology 2000;118:1080-1093. https://doi.org/10.1016/S0016-5085(00)70361-1
  160. Nam KT, Lee HJ, Sousa JF, Weis VG, O'Neal RL, Finke PE, et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology 2010;139:2028-2037.e9. https://doi.org/10.1053/j.gastro.2010.09.005
  161. Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J, Sund NJ, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 2002;122:689-696. https://doi.org/10.1053/gast.2002.31902
  162. Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I, Honda S, et al. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun 2002;294:470-479. https://doi.org/10.1016/S0006-291X(02)00480-1
  163. Quante M, Marrache F, Goldenring JR, Wang TC. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology 2010;139:2018-2027.e2. https://doi.org/10.1053/j.gastro.2010.08.003
  164. Kim TH, Shivdasani RA. Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med 2011;208:677-688. https://doi.org/10.1084/jem.20101737
  165. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010;6:25-36. https://doi.org/10.1016/j.stem.2009.11.013
  166. Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2011;9:317-329. https://doi.org/10.1016/j.stem.2011.09.001
  167. Qiao XT, Ziel JW, McKimpson W, Madison BB, Todisco A, Merchant JL, et al. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology 2007;133:1989-1998. https://doi.org/10.1053/j.gastro.2007.09.031
  168. Johnson LR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD, eds. Physiology of the Gastrointestinal Tract. 5th ed. London: Academic Press, 2012.

Cited by

  1. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori , and bile acids vol.6, pp.None, 2014, https://doi.org/10.3389/fmicb.2015.00412
  2. Helicobacter pylori Update: Gastric Cancer, Reliable Therapy, and Possible Benefits vol.148, pp.4, 2015, https://doi.org/10.1053/j.gastro.2015.01.040
  3. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis vol.370, pp.1673, 2014, https://doi.org/10.1098/rstb.2014.0228
  4. Correlation of cadherin-17 protein expression with clinicopathological features and prognosis of patients with sporadic gastric cancer vol.48, pp.12, 2015, https://doi.org/10.1590/1414-431x20154645
  5. miR-148a downregulates the expression of transforming growth factor-β2 and SMAD2 in gastric cancer vol.48, pp.5, 2014, https://doi.org/10.3892/ijo.2016.3437
  6. A case series of intestinal adenomatous polyposis of unidentified etiology; a late effect of irradiation? vol.16, pp.None, 2014, https://doi.org/10.1186/s12885-016-2880-2
  7. Fbxw7 haploinsufficiency loses its protection against DNA damage and accelerates MNU-induced gastric carcinogenesis vol.8, pp.20, 2014, https://doi.org/10.18632/oncotarget.16800
  8. miR-374 mediates the malignant transformation of gastric cancer-associated mesenchymal stem cells in an experimental rat model vol.38, pp.3, 2014, https://doi.org/10.3892/or.2017.5831
  9. Murine Models of Gastric Corpus Preneoplasia vol.3, pp.1, 2014, https://doi.org/10.1016/j.jcmgh.2016.11.001
  10. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report vol.66, pp.1, 2014, https://doi.org/10.1136/gutjnl-2016-312288
  11. Activation of Signal Transduction and Activator of Transcription 3 Signaling Contributes to Helicobacter -Associated Gastric Epithelial Proliferation and Inflammation vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/9050715
  12. Species‐specific role of gene‐adjacent retroelements in human and mouse gastric carcinogenesis vol.142, pp.8, 2018, https://doi.org/10.1002/ijc.31120
  13. Multi‐omics analysis identifies pathways and genes involved in diffuse‐type gastric carcinogenesis induced by E‐cadherin, p53, and Smad4 loss in mice vol.57, pp.7, 2014, https://doi.org/10.1002/mc.22803
  14. Gastric Mucosal Atrophy Impedes Housekeeping Gene Methylation in Gastric Cancer Patients vol.51, pp.1, 2014, https://doi.org/10.4143/crt.2018.085
  15. Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis vol.68, pp.11, 2019, https://doi.org/10.1136/gutjnl-2018-316691
  16. Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-11011-4
  17. Ultrasound and Transcriptomics Identify a Differential Impact of Cisplatin and Histone Deacetylation on Tumor Structure and Microenvironment in a Patient-Derived In Vivo Model of Gastric Cancer vol.13, pp.9, 2021, https://doi.org/10.3390/pharmaceutics13091485
  18. Probing Transferrin Receptor Overexpression in Gastric Cancer Mice Models vol.6, pp.44, 2014, https://doi.org/10.1021/acsomega.1c04382