DOI QR코드

DOI QR Code

Tropical Cyclone Track and Intensity Forecast Using Asymmetric 3-Dimensional Bogus Vortex

비축대칭 3차원 모조 소용돌이를 이용한 열대저기압의 진로 및 강도예측

  • Lee, Jae-Deok (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Cheong, Hyeong-Bin (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kang, Hyun-Gyu (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kwon, In-Hyuk (Korea Institute of Atmospheric Prediction System)
  • 이재덕 (부경대학교 환경대기과학과) ;
  • 정형빈 (부경대학교 환경대기과학과) ;
  • 강현규 (부경대학교 환경대기과학과) ;
  • 권인혁 (한국수치예보개발사업단)
  • Received : 2014.01.27
  • Accepted : 2014.04.22
  • Published : 2014.06.30

Abstract

The bogussing method was further developed by incorporating the asymmetric component into the symmetric bogus tropical cyclone of the Structure Adjustable Balanced Vortex (SABV). The asymmetric component is separated from the disturbance field associated with the tropical cyclone by establishing local polar coordinates whose center is the location of the tropical cyclone. The relative importance of wave components in azimuthal direction was evaluated, and only two or three wave components with large amplitude are added to the symmetric components. Using the Weather Research and Forecast model (WRF), initialized with the asymmetric bogus vortex, the track and central pressure of tropical cyclones were predicted. Nine tropical cyclones, which passed over Korean peninsula during 2010~2012 were selected to assess the effect of asymmetric components. Compared to the symmetric bogus tropical cyclone, the track forecast error was reduced by about 18.9% and 17.4% for 48 hours and 72 hours forecast, while the central pressure error was not improved significantly. The results suggest that the inclusion of asymmetric component is necessary to improve the track forecast of tropical cyclones.

Keywords

References

  1. Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensityfForecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046-2061. https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2
  2. Carr, L. E, and R. L. Elsberry, 1998: Objective diagnosis of binary tropical cyclone interactions for the western North Pacific Basin. Mon. Wea. Rev., 126, 1734-1740. https://doi.org/10.1175/1520-0493(1998)126<1734:ODOBTC>2.0.CO;2
  3. Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354-1374. https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2
  4. Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero Mean flow. J. Atmos. Sci., 44, 1257-1265. https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2
  5. Cheong, H.-B., I.-H. Kwon, T.-Y. Goo, and M.-J. Lee, 2002: High-order harmonic spectral filter with the double Fourier series on a sphere. J. Comput. Phys., 177, 313-335. https://doi.org/10.1006/jcph.2002.6997
  6. Cheong, H.-B., I.-H. Kwon, and T.-Y. Goo, 2004: Further study on the high-order double Fourier series spectral filtering on a sphere. J. Comput. Phys., 193, 180-197. https://doi.org/10.1016/j.jcp.2003.07.029
  7. Cheong, H.-B., I.-H. Kwon, H.-G. Kang, J.-R. Park, H.-J. Han, and J.-J. Kim, 2011: Tropical cyclone track and intensity prediction with a structure adjustable balanced vortex. Asia-Pac. J. Atmos. Sci., 47, 293-303. https://doi.org/10.1007/s13143-011-0018-7
  8. Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975-990. https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2
  9. Frank, W. M., and E. A. Ritchie 1999: Effects on environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044-2061. https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2
  10. Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on hurricane intensity and structure. Mon. Wea. Rev., 129, 2249-2269. https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
  11. Fujiwara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287-293.
  12. Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37-69. https://doi.org/10.1007/BF01277501
  13. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single- Moment 6-class microphysics scheme (WSM 6). J. Korean Meteor. Soc., 42, 129-151.
  14. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  15. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  16. Kang, M.-K., and H.-B. Cheong, 2001: Oscillation of separation distance between paired typhoon-scale vortices. J. Meteor. Soc. Japan, 79, 967-983. https://doi.org/10.2151/jmsj.79.967
  17. Kim, S.-H., H.-J. Kwon, and R. L. Elsberry, 2009: Beta gyres in global analysis fields. Adv. Atmos. Sci., 26, 984-994. https://doi.org/10.1007/s00376-009-8109-4
  18. Kurihara, Y., 1993a: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030-2045. https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
  19. Kwon, I.-H., and H.-B. Cheong, 2010: Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Mon. Wea. Rev., 138, 1344-1367. https://doi.org/10.1175/2009MWR2943.1
  20. Lewis J., A. V. Tuly, and C. Velden, 1987: A dynamical method for building continuity into the deep layer mean. Mon. Wea. Rev., 115, 885-893. https://doi.org/10.1175/1520-0493(1987)115<0885:ADMFBC>2.0.CO;2
  21. Moller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in barotropic model. J. Atmos. Sci., 56, 1674-1687. https://doi.org/10.1175/1520-0469(1999)056<1674:VRWAHI>2.0.CO;2
  22. Maclay, K. S., M. Demaria, and T. H. Vonder Harr, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 4882-4898. https://doi.org/10.1175/2008MWR2268.1
  23. Park, J.-R., H.-B. Cheong, and H.-G. Kang, 2011: Highorder spectral filter for the spherical-surface limited area. Mon. Wea. Rev., 139, 1256-1278. https://doi.org/10.1175/2010MWR3440.1
  24. Peng, M. S., B.-F. Jeng, and R. T. Williams, 1999: A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect. J. Atmos. Sci., 56, 1404-1423. https://doi.org/10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2
  25. Reeder, M. J., and R. K. Smith, 1991: The detection of flow asymmetries in the tropical cyclone environment. Mon. Wea. Rev., 119, 848-855. https://doi.org/10.1175/1520-0493(1991)119<0848:TDOFAI>2.0.CO;2
  26. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR, http://www.mmm.ucar.edu/wrf/user/docs/arw_v3.pdf.
  27. Ueno, M., 1995: A study on the impact of asymmetric components around tropical cyclone center on the accuracy of bogus data and the track forecast. Quart. J. Roy. Meteor. Soc. 47, 287-292.
  28. Thomas J. Galarneau Jr., and Christopher A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405-430. https://doi.org/10.1175/MWR-D-12-00071.1
  29. Wang, Y., 2002a: Vortex rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets*. J. Atmos. Sci., 59, 1213-1238. https://doi.org/10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2
  30. Wang, Y., 2002b: Vortex rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes*. J. Atmos. Sci., 59, 1239-1262. https://doi.org/10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2
  31. Williams, R. T., and J. C. L. Chan, 1994: Numerical studies of the beta effect in tropical cyclone motion. Part II: Zonal mean flow effects. J. Atmos. Sci., 51, 1065-1076. https://doi.org/10.1175/1520-0469(1994)051<1065:NSOTBE>2.0.CO;2
  32. Willoughby, H. E., 1994: Nonlinear motion of a shallowwater barotropic vortex. J. Atmos. Sci., 51, 3722-3744. https://doi.org/10.1175/1520-0469(1994)051<3722:NMOASW>2.0.CO;2
  33. Zhong, Zhong, Wang Xiaoting, and Zhang Jinshan, 2007: The possible mechanism on the formation and intensification of the maximum wind core in tropical cyclone. J. Korean Meteor, Soc., 43, 185-194.

Cited by

  1. Effect of Sea Surface Temperature Gradient Induced by the Previous Typhoon's Cold Wake on the Track of the Following Typhoon: Bolaven (1215) and Tembin (1214) vol.26, pp.4, 2016, https://doi.org/10.14191/Atmos.2016.26.4.635
  2. Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions vol.10, pp.11, 2019, https://doi.org/10.3390/atmos10110644