DOI QR코드

DOI QR Code

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints

부분강절 뼈대구조의 비탄성 좌굴해석

  • 민병철 (인덕대학교, 토목환경공학과)
  • Received : 2014.01.01
  • Accepted : 2014.04.07
  • Published : 2014.06.27

Abstract

An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

본 연구에서는 부분강절 뼈대구조물의 비탄성 좌굴해석기법을 제시하기 위하여, 이전의 연구[16]에서 제시되었던 부분강절 뼈대구조의 엄밀한 강도행렬과 선형해석을 위한 탄성 및 기하학적 강도행렬을 도입하고 비탄성 좌굴해석을 위해 도로교시방서의 극한내하력 기준과 EF법을 이용하여 부분강절 뼈대구조의 비탄성 좌굴해석 프로그램을 새롭게 개발하였다. 본 연구에서 제시한 부분강절 뼈대구조의 접선강도행렬은 안정함수를 사용함에 따라 부재 당 하나의 요소만으로 정확한 비탄성 좌굴해석 결과를 얻을 수 있으며 고유벡터를 이용하여 비탄성 좌굴형상을 얻을 수 있는 장점을 갖는다. 또한, 엄밀한 접선강도행렬에 대해 Taylor 전개를 수행하여 4차항까지 고려함으로서 탄성 강도행렬과 기하학적 강도행렬을 유도하고 선형화된 좌굴해석기법을 제시하였다. 결국, 접선강도행렬을 이용한 비선형 해석프로그램(M1)과 탄성 및 기하학적 강도행렬을 이용한 선형 해석프로그램(M2)이 개발되었으며 이를 이용하여 부분강절로 연결된 뼈대구조물의 비탄성좌굴에 대한 시스템 좌굴하중과 개별부재의 유효좌굴계수를 제시함에 따라 부분강절이 전체 구조계의 좌굴과 개별부재의 유효좌굴길이에 미치는 영향을 다양한 해석예제를 통해 조사하였다.

Keywords

References

  1. American Institute of Steel Construction (2002) AASHTO LRFD Bridge Design Specifications, 2nd Ed., Chicago. IL.
  2. Yura, J.A. (1971) The Effective Length of Column in Unbraced Frames, Engineering Journal, AISC, Vol.8, No.2, pp.49-67.
  3. LeMessurier, W.J. (1977) A Practical Method of Second Order Analysis, Engineering Journal, AISC, 2nd Qtr., pp.49-67.
  4. Cheong-Siat-Moy, F. (1986) K-Factor Paradox, Journal of Structural Engineering, ASCE, Vol.112, No.8, pp. 1747-1760. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:8(1747)
  5. Galambos, T.V. (1988) Guide to Structural Stability Design Criteria for Metal Structures, 4th Ed., John Wiley and Sons, New York.
  6. Salmon, C.G. and Johnson, J.E. (1996) Steel Structures-Design and Behavior, Harper Collons.
  7. Aristizabal-Ochoa, J.D. (2004) Column Stability and Minimum Lateral Bracing : Effects of Shear Deformations, Journal of Engineering Mechanics, ASCE, 130, pp. 1223-1232. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1223)
  8. 진만식, 경용수, 김문영(2004) 평면프레임의 좌굴설계를 위한 정확한 유효좌굴계수 산정, 대한토목학회논문집, 대한토목학회, 제24권, 제3A호, pp.506-519. Jin, M.S., Kyung, Y.S., and Kim, M.Y. (2004) Determination of the Accurate Effective Length Factor for Buckling Design of Plane Frames, Journal of the Korean Society of Civil Engineers, KSCE, Vol.24, No.3A, pp.506-519.
  9. 김문영, 송주영, 경용수(2005) 탄성 및 비탄성 좌굴 고유치해석을 이용한 강뼈대구조의 유효좌굴길이, 한국전산구조공학회논문집, 한국전산구조공학회, 제18권, 제2호, pp.169-178. Kim, M.Y., Song, J.Y., and Kyung, Y.S. (2005) Determination of Effective Buckling Length of Plane Frames using Elastic and Inelastic System Buckling Analysis, Journal of Computational Structural Engineering Institute of Korea, COSEIK, Vol.18, No.2, pp.169-178.
  10. 서건호, 서상정, 권영봉(2011) 국부좌굴이 발생하는 H-형강 휨부재의 강도에 관한 연구, 한국강구조학회논문집, 한국강구조학회, Vol.23, No.6, pp.648-657. Seo, G.H., Seo, S.J., and Kwon, Y.B. (2011) A Study on the Moment Capacity of H-Section Flexural Members with Local Buckling, Journal of Korea Society of Steel Construction, KSSC, Vol.23, No.6, pp.648-657 (in Korean).
  11. 이철호, 한규홍, 김대경, 박창희, 김진호, 이승은, 하태휴 (2012)800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.479-490. Lee, C.H., Han, K.H., Kim, D.K., Park, C.H., Kim, J.H., Lee, S.E., and Ha, T.H. (2012) Local Buckling and Inelastic Behaviour of 800 MPa High-Strength Steel Beams, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.4, pp.479-490 (in Korean). https://doi.org/10.7781/kjoss.2012.24.4.479
  12. 박창희, 이철호, 한규홍, 김진호, 이승은, 하태휴, 김진원 (2013) 고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리, 한국강구조학회논문집, 한국강구조학회, 제25권, 제2호, pp.115-130. Park, C.H., Lee, C.H., Han, K.H., Kim, J.H., Lee, S.E., Ha, T.H., and Kim, J.W. (2013) Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams, Journal of Korean Society of Steel Construction, KSSC, Vol.25, No.2, pp.115-130 (in Korean). https://doi.org/10.7781/kjoss.2013.25.2.115
  13. Iwasaki, H., Nogami, K. and Nagai, M. (2001) Precision of Ef Method for Evaluating Load-Carrying of Long-Span Cable-Stayed Bridges and Its Ultimate Strength Check, IABSE reports, IABSE Conference, Seoul, IABSE.
  14. 한국도로교통협회 (2000) 도로교설계기준. Korea Road & Transportation Association (2000) Design Speed Decision.
  15. 민병철, 경용수, 김문영 (2008) 부분강절로 연결된 엄밀한 접선강도행렬 및 안정성해석프로그램 개발, 한국강구조학회논문집, 한국강구조학회, 제20권, 제1호, pp.81-92. Min, B.Y., Kyung, Y.S., and Kim, M.Y. (2008) Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections, Journal of Korean Society of Steel Construction, KSSC, Vol.20, No.1, pp.81-92 (in Korean).
  16. Bathe, K.J. (2004) Finite Element Procedures, Prentice Hall.
  17. Timoshenko, S.P. and Gere, J.M. (1961) Theory of Elastic Stability, McGraw-Hill.
  18. Sekulovic, M. and Salatic, R. (2001) Nonlinear Analysis of Frames with Flexible Connections, Computer & Structures, Vol.79, pp.1097-1107. https://doi.org/10.1016/S0045-7949(01)00004-9
  19. Mageirou, G. and Gantes, C. (2006) Buckling Strength of Multi-Story Sway, Non-Sway and Patially-Sway Frames with Semi-Rigid Connections, Journal of Constructional Steel Research, Vol.62, pp.893-905. https://doi.org/10.1016/j.jcsr.2005.11.019