DOI QR코드

DOI QR Code

Axial Loading Behaviors of Square Concrete-Filled Tubular Columns with Large Width-to-Thickness Ratio Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets)

탄소섬유쉬트(CFRP Sheets)로 보강된 폭두께비가 큰 콘크리트 충전 각형강관 기둥의 중심축하중거동

  • Park, Jai Woo (Korea Infrastructure Safety Corporation, Research Division) ;
  • Yoo, Jung Han (School of Architecture, Seoul National University of Science & Technology)
  • 박재우 (한국시설안전공단, 시설안전연구소) ;
  • 유정한 (서울과학기술대학교, 건축학부)
  • Received : 2013.06.18
  • Accepted : 2014.05.22
  • Published : 2014.06.27

Abstract

This paper presents the experimental results of behavior of square CFT columns with large the width-ro thickness ratio strengthened with carbon fiber reinforced polymers (CFRP) sheets subjected to concentrated axial loading. The main parameters were b/t ratio and the number of CFRP layers and 6 specimens were fabricated. The values of b/t were ranged from 60 to 100. From the tests, Maximum increase of 16% was also achieved in axial-load capacity with three transverse layered CFRP applied on four sides of steel tubes. The load capacity decreased up to 41% comparing with nominal load capacity of unstrengthened CFT column. However, for CFRP strengthened CFT, the load capacity decreased up to 32%. Finally, from the load-strain relationships, the local buckling occurred before yield point of steel tubes. Also, from the load-strain relationships, it was observed that local buckling were delayed on CFT columns by CFRP sheets retrofitting.

본 연구에서는 콘크리트 충전 각형강관 (CFTP) 단주기둥에 CFRP 쉬트를 횡방향으로 보강하고 중심축하중 실험을 수행하였다. 실험변수는 b/t, CFRP쉬트 보강겹수이며, 총 6개의 실험체가 제작되었다. 실험변수로 사용된 판폭두께비는 b/t는 60, 80, 100이고 CFRP쉬트는 3겹 보강하였다. 실험결과 판폭두께비 100 실험체에서 CFRP쉬트 3겹 보강을 통해 내력을 16% 상승시켜 보강효과를 검증하였다. 내력 저하율을 검토한 결과 국부좌굴이 발생하지 않는 단면강도를 기준으로 최대 41%정도 내력이 저하되었으나, CFRP보강을 통해 32% 정도의 내력이 저하되어 보강효과를 검증할 수 있었다. 하중-변형를 관계를 보면 강재는 항복강도 이전에 국부좌굴이 발생하였으며, CFRP쉬트의 보강을 통해 국부좌굴을 지연시킴을 확인하였다.

Keywords

References

  1. Uy, B. (1998) Local and Post Local Buckling of Concrete Filled Steel Welded Box Columns, J. of Constructional Steel Research., Vol.47, pp.47-72. https://doi.org/10.1016/S0143-974X(98)80102-8
  2. 대한건축학회(2009) 건축구조설계기준 및 해설(KBC 2009), 기문당. AIK (2009) Korea Building Code and Commentary - Structural, Architectural Institute of Korea (in Korean).
  3. AISC (2005) Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.
  4. 최영환(2012) 콘크리트 충전 각형강관 기둥의 폭두께비 제한에 관한 연구, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.451-458. Choi, Y.H. (2012) Limitations on the -Width-to-Thickness Ratio of Rectangular Concrete-Filled Tubular (CFT) Columns, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.4, pp.451-458 (in Korean). https://doi.org/10.7781/kjoss.2012.24.4.451
  5. Ge, H. and Usami, T. (1992) Load Capacity of Concrete-Filled Thin-Walled Steel of Columns: Experiment, J. of Structural Eng., ASCE, Vol.118, No.11, pp.3036-3054. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036)
  6. Lin, T.I., Huang, C.M., and Chen, S.Y. (1993) Concrete-Filled Tubular Steel Columns Subjected to Eccentric Axial Load, J. Chinese Inst. Civil & Hydraulic Eng., Vol.5, No.4, pp.377-386.
  7. Huang, C.S. and Yeh, Y.K. (2002) Axial Load Behavior of Stiffened Concrete-Filled Steel Columns, Journal of Structural Eng, ASCE, Vol.128, No.9, pp.1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  8. Cai, J. and He, ZX.Q. (2006) Axial Load Behavior of Square CFT Stub Column with Binding Bars, Journal of Constructional Steel Research., Vol.62, pp.472-483. https://doi.org/10.1016/j.jcsr.2005.09.010
  9. 박재우, 홍영균, 홍기섭, 이성희, 최성모(2007) 탄소섬유 쉬트로 구속된 콘크리트충전 각형강관기둥의 단조압축 실험, 한국강구조학회논문집, 한국강구조학회, 제19권, 제4호, pp.451-458. Park, J.W., Hong, Y.K., Hong, G.S., Lee, S.G., and Choi, S.M. (2007) The Experimental Study on Axial Loaded Concrete Filled Steel Tube Confined by Carbon Fiber Sheet, Journal of Korean Society of Steel Construction, KSSC, Vol.19, No.4, pp.451-458 (in Korean).
  10. AISC (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.
  11. 한국구조물진단학회(2006) 한국구조물진단공학,구미서관. KSMI (2009) Korea Structural Maintenance and Inspection Engineering, Korea Structural Maintenance and Inspection Association (in Korean).
  12. KS (2007) KS B 0801, 금속재료인장시험편.
  13. KS (2011) KS B 0801, Test Pieces for Tensile Test for Metallic Materials (in Korean).
  14. ASTM (2008) ASTM D 3039, Standard Test Method for Tensile Properties of Polymer Matrix Composites.
  15. 박재우, 최선규, 최성모, 송동엽, 유정한(2012) 탄소섬유 쉬트(CFRP Sheets)로 보강된 세장한 각형강관기둥의 중심축하중실험, 한국강구조학회논문집, 한국강구조학회, 제24권, 제6호, pp.735-742. Park, J.W., Choi, S.K., Choi, S.M., Song, D., and Y., Yoo, J.H. (2012) Concentrated Axial Loading Test for Slender Square Hollow Section Retrofitted by Carbon Fiber Reinforced Polymer Sheets (CFRP Sheets), Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.6, pp.735-742 (in Korean). https://doi.org/10.7781/kjoss.2012.24.6.735

Cited by

  1. 원형단면 멀티기둥 풍력타워 적용 T형 강관조인트 강도 평가 vol.27, pp.1, 2014, https://doi.org/10.7781/kjoss.2015.27.1.119
  2. 아라미드 FRP 스트립과 강판 사이의 계면 부착응력에 관한 실험적 연구 vol.27, pp.4, 2014, https://doi.org/10.7781/kjoss.2015.27.4.359
  3. Evaluation of Compression Strengths of Octagonal Concrete-Filled Tube Columns vol.31, pp.4, 2019, https://doi.org/10.7781/kjoss.2019.31.5.349
  4. Axial Compression Behavior of Concrete-Encased Steel Angle Columns Using High-Strength Steel vol.31, pp.6, 2014, https://doi.org/10.7781/kjoss.2019.31.6.381
  5. 일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동 vol.22, pp.2, 2014, https://doi.org/10.5762/kais.2021.22.2.617