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요  약

3-차원 원통 구조의 공명 에 Krylov-Schur 순환 법을 용하 다. 균질한 메질에서 공명 의 세기를 기술하는 벡터 

Helmholtz 방정식을 FEM을 이용하여 분석하 다. 고유 방정식은 사면 배  구조 요소의 변- 선 벡터에 기반을 두어 구성하

다. 이 방정식은 Helmholtz 작용자의 curl-curl과 연 된 정방형 행렬들로 이루어져 있다. 고유-값들과 고유-모드들은 이들

에 하여 Krylov-Schur 순환 법을 용하고, Schur 행렬의 각 성분들과 변환 행렬들로 부터 구하 다. 결과로써 이들 고유

-값과 고유-모드 들을 시각 으로 묘사하 다. 그리고 각각의 경계조건에 따른 고유- 들을 서로 비교하 다. 

Abstract

Krylov-Schur iteration method has been applied to the 3-Dim. resonant cavity of a cylindrical form. The vector 

Helmholtz equation has been analysed for the resonant field strength in homogeneous media by FEM. An eigen-equation 

has been constructed from element equations basing on tangential edges of the tetrahedra element. This equation made up 

of two square matrices associated with the curl-curl form of the Helmholtz operator. By performing Krylov-Schur iteration 

loops on them, Eigen-values and their modes have been determined from the diagonal components of the Schur matrices 

and its transforming matrices. Eigen-pairs as a result have been revealed visually in the schematic representations. The 

spectra have been compared with each other to identify the effect of boundary conditions.

Keywords : eigen-pair, Krylov-Schur, FEM, Arnoldi decomposition, QR algorithm, unitary transform.  

I. INTRODUCTION

Usually the cavity resonator has the form of a 

volume filled with a dielectric or air. The volume is 

bounded by a conducting surface or by a space 
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having differing electrical or magnetic properties. 

Eigen-mode analysis is a vital step during the design 

stage of the resonant cavity structure. Acquiring 

information about the eigen-pairs of the cavity gives 

an understanding of its resonant properties. In most 

cases, the resonant cavity can support an infinite 

number of eigen-pairs. Each eigen-pair corresponds 

to a unique electromagnetic field patten generated in 

it. This identification process can be sometimes 

confusing and requiring a precisely numerical 
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calculation. Especially, given the different boundary 

conditions make the complex eigen-pairs which can 

not be easily identified even in the same cavity. So. 

it would be resonable to study varied eigen-pairs for 

the cylindrical resonant cavity using the more 

confidential numerical algorithm.

Krylov-Schur iteration method has been known as 

one of the most important and actively developing 

algorithms for calculating the eigen-problems[1～2]. 

Especially, it has been recognized that this algorithm 

would be indispensable tool to understand the 

physical properties of the electromagnetic wave 

propagating in any cavity.

Previously, we have studied on the 

eigen-properties of 2-Dimensional(Dim.) waveguides 

of varied forms using Krylov-Schur iteration 

method[3～4]. The spectra of Transverse Magnetic(TM) 

and Transverse Electric(TE) eigen-modes and 

eigen-values have been revealed visually as the 

results. In the process of the calculation, it has been 

identified even more that this algorithm has been 

carried out robustly and drawn the eigen-pairs 

confidently. From these reasons, it could be 

recognized ones again the prominent ability of 

Krylov-Schur algorithm in calculating the large scale 

and non-symmetric eigen-problems.

To meet the demand of the periodic tendency, 

Krylov-Schur algorithm the same as previously 

studying has been applied to a 3-Dim. cavity of the 

cylindrical form. The eigen-equation were constructed 

basing on Finite Element method(FEM). The mesh 

element was simple tetrahedron and the shape 

functions were constructed with constant tangential 

edge vectors. In this study, it has been aim to certify 

the availability of Krylov-Schur algorithm for more 

general problems by revealing the eigen-properties of 

TM modes in 3-Dim. resonant cavity. As the results, 

the spectra for each eigen-pairs have been visualized 

with the schematic representations as like the 

previous study.

Ⅱ. FINITE ELEMENT FORMULATION

For the cavity of homogeneous media, the 

eigen-modes for TM and TE would be governed by 

the vector Helmholtz equation of dual form

∇×
 ∇  ×
 

  (1)

where     is the wave number and, for 

the TE mode 
 (transverse electric field 

strength),    (relative permeability ),    

(relative permittivity    ) and, for the TM mode 

  
  (transverse magnetic field strength),     , 

   . For a claim of the calculational convenience, 

the following description would be related to the 

common notation not differentiating TM or TE 

modes. The eigen-equations have been obtained from 

FEM. The Galerkin method of weighted residual has 

been used to construct a linear equation. In this 

process, boundaries of the cavity have been assumed 

to be PEC(perfect electric conductor). Hence,   for 

the TM and its normal derivative   for the TE 

cases may vanish at the boundary. The final equation 

resulted from FEM is given by 






∇×∙ 

∇× 

 


 ∙


(2)

To avoid the spurious solution attributed to the 

lack of enforcement of divergence condition for  , 

six basis functions have been constructed with 

constant tangential edge vectors   of the 

tetrahedral element
[6]

  
∇ 

∇   (3)

In this representation,   and   are the 

simplex coordinates associated with the 1st and 2nd 

nodes connected by the edge  , and   is the length 

of edge  . The simplex coordinates for a given 
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elementary mesh are 

           (4)

and the gradient of any simplex coordinate is

∇     (5)

The simplex coefficients are calculated by inverting 

the coordinate matrix






   
   
   
   






 




   
   
   
   






 

 (6)

where    is a location of node . A 

tetrahedron structure is given a local structure as 

illustrated in Fig.1. The magnetic field strength in a 

single tetrahedral element is represented using the 

tangential edge elements   as

 





 (7)

The six unknown parameters associated with each 

edge are . Substituting equation (7) into 

equation (2), the eigen-equation for one tetrahedral 

element can be written in matrix form as [7]

    
    (8)

where the element matrices are given by  

그림 1. 사면배  단  구조

Fig. 1. Tetrahedral structure of elemental mesh.

   

 


∇× ∙ 
∇× (9)

   


 ∙
 (10)

The evaluation of the element matrix    requires 

the curl of each basis function 

∇× 
∇× ∇  ∇ 

 
∇ ×
∇

     

    

    ≡ 


(11)

and from it

     
 ∙
  (12)

To obtain the element matrix    , the scalar 

product between   and 
  may be calculated

 ∙
   

∇  
∇

∙  
∇  

∇ 

    

   

(13)

where 

 
∇∙

∇

     

(14)

In the process of    calculation, following 

volume integration for 3-Dim. simplex coordinates 

may be used [8]
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(15)

These integrals can be simply summarized in the 

matrix form as 

   
 


  






   
   
   
   




 (16)

From representations (13), (14) and (16), the 

element matrix     may be written as

      

   

  

(17)

These element matrices are assembled over all 

tetrahedral elements in the 3-Dim. cavity volume to 

obtain a global eigen-matrix equation.

          (18)

Ⅲ. KRYLOV-SCHUR ITERATION METHOD

As mentioned in the previous study, it has been 

well known that the Krylov-Schur iteration method 

is the one of most reliable technique for finding the 

prominent eigen-pairs
[9]
. The method would be more 

그림 2. Krylov-Schur 순환법의 계략도

Fig. 2. Block diagram for Krylov-Schur algorithm.

efficiently implemented in finding specific eigen-pairs 

by performing the shift-invert strategy as following



  


 


  (19)

The sparsity and symmetry of the eigen-equation 

would be lost, but by this strategy the convergent 

rate is more promoted around at the specific value  . 

Subsequently, Krylov-Schur iteration method is 

performed on this square matrix   . It could be 

definitely summarized as in the Fig.2. Arnoldi 

decomposition compress the matrix    into the 

Hessenberg matrix of dimension ×  by the 

orthogonal matrix   of the dimension ×
[10]

. 

QR algorithm with the ×  matrix   is 

applied to this compressed square matrix resulting 

into the upper triangular Schur matrix
[11]

. To obtain 

the wanted eigen-values, inverse iteration method 

with   is operated on this matrix[12]. The wanted 

eigen-values   or not wanted is determined by the 

tolerant value   and the relation

∥      ∥
    

≤ max∥∥   ×
(20)

Where   and ∥∥  are the unit round off and 
the Frobenius norm respectively. The eigen-values 

would be located randomly in the diagonal position of 

the Schur matrix. The unitary similarity transform is 

carried out to shift these components to left upper 

position by the matrix  [13]. The eigen-modes 

corresponding to these eigen-values are resulted from 

the above transforming matrices by multiplying them 

sequently

     (21)

After obtaining these eigen-pairs, they are locked 

and made no longer participating in the subsequent 

calculation for other remaindering eigen-pairs. The 
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iterating calculations are continued subsequently 

restructuring the Schur matrix which is smaller than 

the original one by the locked components. The initial 

Arnoldi vector is assumed to be the last column 

vector of the last decomposition matrix.

Ⅳ. TETRAHEDRAL MESH

The cavity is assumed to have a shape of 

cylindrical form whose magnitude of radius and 

height are the same with each other. The space of 

the cavity has been decorated with the body centered 

cubic lattice as a first step of mesh constructing 

process. The mesh elements of the tetrahedral 

structure have been made by connecting the four 

lattice points as exhibited in Fig. 3. Fig. 3 (a) and (b) 

is the feature of the initial mesh projected in the xy 

and yz plane respectively. The tetrahedral elements 

laying outside the boundaries must be reconstructed 

because of including the non-meaningful space 

outside the cavity. The space running over the 

boundaries could be excluded from the boundaries. 

The nodes positioned over the surface could be 

shifted to the boundaries. The edge lengths of 

element meshes deformed by them may be remedied 

to recover the shape of tetrahedral structure. The 

resulting mesh has been represented on the cavity as 

can be seen in Fig. 4. The eigen-equation has been 

constructed from FEM based on this tetrahedral 

mesh. The eigen-pairs have been calculated by 

(a)                           (b)

그림 3. (a) xy-면  (b) yz-면에 투 된 단  요소

Fig. 3. Mesh projected on.

(a) xy-plane and (b) yz-plane.

그림 4. 3-차원 요소 

Fig. 4. 3-Dim. mesh.

applying Krylov-Schur iteration method to this 

equation.

V. RESULTS AND DISCUSSION

In this study, the eigen-pairs for the cylindrical 

resonant cavities with different boundary conditions 

were compared with each other. The one has been 

assumed that the lateral boundary surface coated 

with the perfectly conducting metal, and the other did 

not given any restriction. In the process of 

calculational implementation, the former condition was 

accommodated by ignoring the variables for the 

tangential edge vectors on the surface. The space 

occupied by the cavity was assumed to be linear and 

homogeneous. So, it not been worried any leakage 

and anisotropic field variation in the calculation.

It was assumed that the cylindrical resonant cavity 

has the finite length along the direction of 

propagating wave. It was also assumed that the 

radius and height of them are given with the same 

sizes arbitrary. The structure The mesh in this study 

were constructed by tetrahedral unit structures for 

the space of the cavity excluding the surfaces. 

Around these places, systematic remedying for the 

tetrahedra has been made by shifting the node points 

and adjusting the edge lengths. For the three 

dimensional problem, the number of variables 

increases drastically compared with those for two 

dimensional problems. The numbers of node, mesh 

and edge in this study have been 389, 992 and 1780 

respectively resulting by remedying and refining the 
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raw mesh. Krylov-Schur iteration method have been 

carried out as mentioned in the Fig. 2. which is the 

same as the previous studies[3～4]. The iterative loops 

have been performed satisfactory to ensure its 

robustness. The most important and time 

consumptive process in this iteration loop is the 

calculation of the inverse matrix for the square 

matrix   . The edge number has not caused any 

trouble in calculating the inverse matrix by LU 

decomposition method even using personal computer. 

 (A_a)TE100 4.176

    

 (B_a)TE100 4.026 

 (A_b)TM100 4.811 

    

  (B_b)TM120 7.913 

 (A_c)TE220 5.186 

    

 (B_c)TE220 7.116 

 (A_d)TE220 5.426 

    

 (B_d)TE220 9.525 

그림 5. 원통형 공명 의 고유모드와 수()

Fig. 5. Eigen-modes and eigen-values() of the 

cylindrical resonant cavities.

In determining the eigen-pairs, a tolerant value have 

been a value about ∼    which is larger than 

that of 2-Dim. cases. The eigen-values have been 

calculated by converting each diagonal components of 

the Schur matrix into values 
  


   reversing 

the shift-invert strategy. Wave numbers have been 

calculated by taking square root values on them. The 

resulting eigen-pairs have been revealed 

schematically in the Fig.5. The spectra were arranged 

with characteristic wave numbers about the values 

2-10  . In figures, spectra named by A_series are 

for the cavity without any restriction. Spectra 

represented by B_series are for the cavity whose 

lateral surface have been coated with the perfectly 

conducting metal. 3-Dim. spectra have been 

accompanied with the 2-Dim. spectra which are 

resulted by projecting them on the xy and yz plains. 

The mode-types were determined by comparing them 

with those of the reference[14]. As can be seen from 

this figure, it may be identified that spectra A_series 

and B_series have been sufficiently reflected the 

properties of each boundary conditions. The spectra 

(A_a) and  (B_a) have revealed the similar properties 

of TE100 modes. The difference appeared at the 

circumference around the lateral surfaces. As 

increasing the wave numbers, the similarity was 

disappeared. The spectra were seemed to show their 

intrinsic properties depending on their boundary 

conditions. The spectra have been shown no variation 

in z-direction. It would be come from the difference 

of height relatively small compared to the radius. 

 

VI. Conclusion

The Krylov-Schur iteration method has been 

applied to the 3-Dim. resonant cavities of the 

cylindrical form. Cavities have different lateral 

boundary conditions. The eigen-pairs satisfying the 

convergent condition have been obtained. It has 

seemed that the boundary conditions were sufficiently 
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reflected on the spectra. From these results, it has 

been certified that the spectra have revealed the 

characteristics of the eigen- properties of the cavity 

under different boundary conditions. Together with 

the results from calculations of 2-Dim. waveguides, it 

was successfully confirmed that Krylov-Schur 

algorithm could be applied to varied physical 

structures.
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