단신 (Notes) # A Synthesis of Novel Sulfur-Linked Fused Thienotriazolopyrimidine Derivatives #### Yang-Heon Song* Department of Chemistry, Mokwon University, Doanbukro 88, Daejeon 302-729, Korea *E-mail: yhsong@mokwon.ac.kr (Received June 16, 2014; Accepted July 9, 2014) Key words: Thienotriazolopyrimidine, 1,2,4-Triazole, Tetracyclic, STAT-3 #### INTRODUCTION Interleukin-6 (IL-6) binds to its receptor (IL-6R, a ligand-binding 80 kDa glycoprotein chain) and induces the homo-dimerization of a signal transducing glycoprotein 130 (gp130), leading to the activation of the Janus kinase (Jak)/signal transducer and signal activator of transcription-3 (STAT3). STAT3 is also frequently over-expressed or persistently activated in most tumors and cancer, and activated STAT3 was found to suppress tumor-immune surveillance. Therefore, the blockade of STAT3 activation pathway stimulated by IL-6 could be an attractive therapeutic target for discovery of new drugs and is currently under intense investigation. In the other hand, thienotriazolopyrimidines have recently attracted much interest because of their pharmacological and therapeutic properties including anticancer, anti-inflammatory, urea transport protein (UT-B) inhibitor, Shiga toxin trafficking inhibitor 1, and xanthine oxidase inhibitor 2, as shown in Figure 1⁴. Furthermore, sulfur-linked triazoles (3thio-1,2,4-triazoles) have been reported to possess a wide range of biological activities such as antifungal agent, diacylglycerol acyltransferase 1 (DGAT1) inhibitor 3, carbonic anhydrase inhibition, somatostatin sst2/sst5 agonists, and dopamine D₃ receptor antagonist 4.5 We have synthesized over the years thienopyrimidine and thienotriazolopyrimidine derivatives of promising biological activity.⁶ From a programme to discover novel inhibitors using thienopyrimidine derivatives, some of sulfur-linked thienotriazolopyrimidine compounds were recently found to possess potent IL-6/STAT3 inhibition. This result encouraged us to prepare new sulfur-linked tetracyclic thienotriazolopyrimidines in attempt to improve the IL-6/STAT3 inhibitory activity. ### **EXPERIMENTAL** #### Chemistry Melting points were determined in capillary tubes on Büchi apparatus and are uncorrected. Each compound of the reactions was checked on thin-layer chromatography of Merck Kieselgel $60F_{254}$ and purified by column chromatography Merck silica gel (70–230 mesh). The ¹H NMR spectra were recorded on Unity Inova 400NB FT NMR spectrometer (400 MHz) with Me₄Si as internal standard and chemical shifts are given in ppm (δ). Mass spectra were recorded on a HP 59580 B spectrometer. Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer. #### General Procedure for the Preparation of 7 and 8 Thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione **(5)** or thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione **(6)**^{6(f)} (5 mmol) and methyl iodide (10 mmol) were stirred in ethanol (20 mL) containing sodium acetate (20 mmol) for 8 h at room temperature. The reaction mix- Figure 1. Thienotriazolopyrimidines 1, 2 and sulfur-linked triazoles 3, 4 ture was diluted with water, and the solid was filtered, dried and recrystallized from ethanol to give 7 and 8, respectively. ## 3-(Methylthio)thieno[3,2-e][1,2,4]triazolo[4,3-c] pyrimidine (7) Yield 82%; mp 222–223 °C; ¹H NMR (DMSO-d₆): δ 9.60 (s, 1H), 8.05 (d, 1H, J= 5.6 Hz), 7.78 (d, 1H, J= 5.6 Hz), 2.71 (s, 3H); MS (ESI): (m/z) 222.4 (M⁺). *Anal*. Calcd. For C₈H₆N₄S₂: C, 43.23; H, 2.72; N, 25.20. Found: C, 43.40; H, 2.63; N, 25.08. ## 3-(Methylthio)thieno[2,3-e][1,2,4]triazolo[4,3-c] pyrimidine (8) Yield 88%; mp 155–157 °C; ¹H NMR (DMSO-d₆): δ 9.61 (s, 1H), 8.31 (d, 1H, J= 5.6 Hz), 7.72 (d, 1H, J= 5.6 Hz), 2.70 (s, 3H); MS (ESI): (m/z) 222.6 (M⁺). *Anal*. Calcd. For C₈H₆N₄S₂: C, 43.23; H, 2.72; N, 25.20. Found: C, 43.11.; H, 2.69; N, 25.31. #### General Procedure for the Preparation of 9 and 10 A mixture of 7 or 8 (5 mmol) and hydrazine hydrate (40 mmol) in ethanol (30 mL) was refluxed for 3 h. After cooling and evaporation, the solid formed was filtered, dried and recrystallized from ethanol to give 9 and 10, respectively. ## 3-Hydrazinylthieno[3,2-e][1,2,4]triazolo[4,3-c] pyrimidine (9) Yield 78%; mp 260–262 °C; ¹H NMR (DMSO-d₆): δ 8.48 (s, 1H), 8.03 (d, 1H, J= 5.6 Hz), 7.33 (d, 1H, J= 5.6 Hz); MS (ESI): (m/z) 206.5 (M⁺). *Anal*. Calcd. For C₇H₆N₆S: C, 40.77; H, 2.93; N, 40.75. Found: C, 40.88; H, 2.89; N, 40.56. ## 3-Hydrazinylthieno[3,2-e][1,2,4]triazolo[4,3-c] pyrimidine (10) Yield 75%; mp 264–266 °C; ¹H NMR (DMSO-d₆): δ 8.39 (s, 1H), 7.75 (d, 1H, J= 5.6 Hz), 7.55 (d, 1H, J= 5.6 Hz); MS (ESI): (m/z) 206.1 (M⁺). *Anal*. Calcd. For C₇H₆N₆S: C, 40.77; H, 2.93; N, 40.75. Found: C, 40.68; H, 2.83; N, 40.68. #### General Procedure for the Preparation of 11 and 12 A mixture of **9** or **10** (3 mmol) and carbon disulfide (30 mmol) in ethanolic potassium hydroxide (10%, 20 mL) was refluxed for 6 h. After cooling and evaporation of solvent, the residue was dissolved in water and acidified by adding 10% HCl. The solid formed was filtered, dried and recrystallized from ethanol to give **11** and **12**, respectively. ### [1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[3,2-e] pyrimidine-9(8*H*)-thione (11) Yield 80%; mp 256–258 °C; ¹H NMR (DMSO-d₆): δ 13.5 (s, 1H), 9.45 (s, 1H), 8.10 (d, 1H, J= 5.6 Hz), 7.56 (d, 1H, J= 5.6 Hz); MS (ESI): (m/z) 248.1 (M⁺). *Anal*. Calcd. For C₈H₄N₆S₂: C, 38.70; H, 1.62; N, 33.85. Found: C, 38.88; H, 1.69; N, 33.69. ## [1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[2,3-e]pyrimidine-9(8*H*)-thione (12) Yield 80%; mp 279–281 °C; ¹H NMR (DMSO-d₆): δ 14.0 (s, 1H), 8.90 (s, 1H), 8.30 (d, 1H, J= 5.6 Hz), 7.51 (d, 1H, J= 5.6 Hz); MS (ESI): (m/z) 248.5 (M⁺). *Anal.* Calcd. For C₈H₄N₆S₂: C, 38.70; H, 1.62; N, 33.85. Found: C, 38.80; H, 1.55; N, 33.70. ## General Procedure for the Preparation of 13a-f and 14a-f Sodium acetate (2 mmol) was added to a solution of 11 or 12 (1.2 mmol) in ethanol (20 mL) with stirring at room temperature. After 5 min, an α -bromocarboxylic acid (1.2 mmol) was slowly added in small portions and the resulting solution was heated at reflux for 6 h. After cooling, the solid was filtered, washed with water and recrystallized from ethanol or ethyl acetate to give products, respectively. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-*c*]thieno-[3,2-*e*]pyrimidin-9-ylthio)-2-phenylacetic acid (13a) Yield 71%; mp 223–224 °C; ¹H NMR (DMSO-d₆): δ 9.50 (s, 1H), 8.01 (d, 1H, J= 5.6 Hz), 7.73 (d, 1H, J= 5.6 Hz), 7.38 (m, 2H), 7.25–7.18 (m, 3H), 5.55 (s, 1H); MS (ESI): (m/z) 382.2 (M⁺). *Anal.* Calcd. For C₁₆H₁₀N₆O₂S₂: C, 50.25; H, 2.64; N, 21.98. Found: C, 50.38; H, 2.59; N, 22.10. ### 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[3,2-e]pyrimidin-9-ylthio)-2-(2-chlorophenyl)acetic acid (13b) Yield 78%; mp 246–247 °C; ¹H NMR (DMSO-d₆): δ 9.56 (s, 1H), 8.04 (d, 1H, J= 5.6 Hz), 7.75 (d, 1H, J= 5.6 Hz), 7.56 (d, 1H), 7.49 (d, 1H), 7.44–7.38 (m, 2H), 5.72 (s, 1H); MS (ESI): (m/z) 416.9 (M⁺). *Anal.* Calcd. For C₁₆H₉ ClN₆O₂S₂: C, 46.10; H, 2.18; N, 20.16. Found: C, 46.01; H, 2.22; N, 20.30. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[3,2-e]pyrimidin-9-ylthio)-2-(3-chlorophenyl)acetic acid (13c) Yield 77%; mp 243–244 °C; ¹H NMR (DMSO-d₆): δ 9.50 (s, 1H), 8.02 (d, 1H, J= 5.6 Hz), 7.72 (d, 1H, J= 5.6 Hz), 7.59 (s, 1H), 7.44 (m, 1H), 7.35–7.27 (m, 2H), 5.88 (s, 1H); MS (ESI): (m/z) 416.3 (M $^+$). *Anal.* Calcd. For $C_{16}H_9$ ClN₆O₂S₂: C, 46.10; H, 2.18; N, 20.16. Found: C, 45.96; H, 2.08; N, 20.05. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[3,2-e]pyrimidin-9-ylthio)-2-(4-chlorophenyl)acetic acid (13d) Yield 86%; mp 240–242 °C; ¹H NMR (DMSO-d₆): δ 9.55 (s, 1H), 8.03 (d, 1H, J= 5.6 Hz), 7.76 (d, 1H, J= 5.6 Hz), 7.50 (d, 2H), 7.31 (d, 2H), 5.91 (s, 1H); MS (ESI): (m/z) 416.3 (M⁺). *Anal*. Calcd. For C₁₆H₉CIN₆O₂S₂: C, 46.10; H, 2.18; N, 20.16. Found: C, 46.19; H, 2.04; N, 20.24. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[3,2-e]pyrimidin-9-ylthio)-2-(4-bromophenyl)acetic acid (13e) Yield 66%; mp 266–267 °C; ¹H NMR (DMSO-d₆): δ 9.60 (s, 1H), 8.07 (d, 1H, *J*= 5.6 Hz), 7.78 (d, 1H, *J*= 5.6 Hz), 7.58 (d, 2H), 7.50 (d, 2H), 5.77 (s, 1H); MS (ESI): (m/z) 461.8 (M⁺). *Anal*. Calcd. For C₁₆H₉BrN₆O₂S₂: C, 41.66; H, 1.97; N, 18.22. Found: C, 41.61; H, 2.07; N, 18.39. ### 2-([1,2,4]triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[3,2-e]pyrimidin-9-ylthio)propanoic acid (13f) Yield 38%; mp 122–123 °C; ¹H NMR (DMSO-d₆): δ 9.56 (s, 1H), 8.05 (d, 1H, J= 5.6 Hz), 7.73 (d, 1H, J= 5.6 Hz), 4.33 (q, 1H), 1.42 (d, 3H); MS (ESI): (m/z) 320.8 (M⁺). *Anal.* Calcd. For C₁₁H₈N₆O₂S₂: C, 41.24; H, 2.52; N, 26.23. Found: C, 41.10; H, 2.59; N, 26.40. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-*c*]thieno-[2,3-*e*]pyrimidin-9-ylthio)-2-phenylacetic acid (14a) Yield 73%; mp 202–203 °C; ¹H NMR (DMSO-d₆): δ 9.48 (s, 1H), 8.24 (d, 1H, J= 5.6 Hz), 7.66 (d, 1H, J= 5.6 Hz), 7.55 (m, 2H), 7.32–7.20 (m, 3H), 5.37 (s, 1H); MS (ESI): (m/z) 382.6 (M⁺). *Anal*. Calcd. For C₁₆H₁₀N₆O₂S₂: C, 50.25; H, 2.64; N, 21.98. Found: C, 50.20; H, 2.56; N, 21.85. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[2,3-e]pyrimidin-9-ylthio)-2-(2-chlorophenyl)acetic acid (14b) Yield 82%; mp 217–218 °C; ¹H NMR (DMSO-d₆): δ 9.48 (s, 1H), 8.28 (d, 1H, J= 5.6 Hz), 7.71 (d, 1H, J= 5.6 Hz), 7.67 (d, 1H), 7.58 (d, 1H), 7.35–7.25 (m, 2H), 5.81 (s, 1H); MS (ESI): (m/z) 416.9 (M⁺). *Anal.* Calcd. For C₁₆H₉CIN₆O₂S₂: C, 46.10; H, 2.18; N, 20.16. Found: C, 46.22; H, 2.21; N, 20.01. ## 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[2,3-e]pyrimidin-9-ylthio)-2-(3-chlorophenyl)acetic acid (14c) Yield 75%; mp 237–239 °C; ¹H NMR (DMSO-d₆): δ 9.48 (s, 1H), 8.24 (d, 1H, J= 5.6 Hz), 7.66 (d, 1H, J= 5.6 Hz), 7.58 (s, 1H), 7.44 (m, 1H), 7.30-7.21 (m, 2H), 5.32 (s, 1H); MS (ESI): (m/z) 416.8 (M⁺). *Anal.* Calcd. For C₁₆H₉ CIN₆O₂S₂: C, 46.10; H, 2.18; N, 20.16. Found: C, 46.22; H, 2.10; N, 20.30. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[2,3-e]pyrimidin-9-ylthio)-2-(4-chlorophenyl)acetic acid (14d) Yield 80%; mp 208–210 °C; ¹H NMR (DMSO-d₆): δ 9.44 (s, 1H), 8.30 (d, 1H, *J*= 5.6 Hz), 7.78 (d, 1H, *J*= 5.6 Hz), 7.58 (d, 2H), 7.38 (d, 2H), 5.62 (s, 1H); MS (ESI): (m/z) 416.5 (M⁺). *Anal*. Calcd. For C₁₆H₉ClN₆O₂S₂: C, 46.10; H, 2.18; N, 20.16. Found: C, 46.23; H, 2.10; N, 20.04. # 2-([1,2,4]Triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[2,32-e]pyrimidin-9-ylthio)-2-(4-bromophenyl)acetic acid (14e) Yield 72%; mp 243–245 °C; ¹H NMR (DMSO-d₆): δ 9.48 (s, 1H), 8.23 (d, 1H, *J*= 5.6 Hz), 7.74 (d, 1H, *J*= 5.6 Hz), 7.48 (d, 2H), 7.38 (d, 2H), 5.28 (s, 1H); MS (ESI): (m/z) 461.8 (M⁺). *Anal*. Calcd. For C₁₆H₉BrN₆O₂S₂: C, 41.66; H, 1.97; N, 18.22. Found: C, 41.50; H, 2.09; N, 18.10. ### 2-([1,2,4]triazolo[4',3':1,5][1,2,4]triazolo[4,3-c]thieno-[3,2-e]pyrimidin-9-ylthio)propanoic acid (14f) Yield 40%; mp 102–104 °C; ¹H NMR (DMSO-d₆): δ 9.50 (s, 1H), 8.28 (d, 1H, J= 5.6 Hz), 7.70 (d, 1H, J= 5.6 Hz), 4.28 (q, 1H), 1.20 (d, 3H); MS (ESI): (m/z) 320.8 (M⁺). *Anal.* Calcd. For C₁₁H₈N₆O₂S₂: C, 41.24; H, 2.52; N, 26.23. Found: C, 41.12; H, 2.41; N, 26.34. #### **RESULTS AND DISCUSSION** The required starting materials **5** and **6** were prepared according to the reported procedure. ^{6(f)} Treatment of **5** or **6** with methyl iodide in the presence of sodium acetate, and the subsequent reaction of the resultant compounds with hydrazine led to the replacement of thiomethyl group to afford 3-hydrazinothienotriazolopyrimidines **9** and **10** (*Scheme* 1). This substitution reaction gave better yield compared to the reaction of chlorothienotriazolopyrimidine (prepared using SOCl₂/DMF) with hydrazine. ^{6(a)} Electrophilic attack of carbon disulfide in the presence of ethanolic KOH on the hydrazines **9** and **10** gave **11** and **12**, respectively, via 426 Yang-Heon Song R: a = Ar, b = 2-Cl-Ar, c = 3-Cl-Ar, d = 4-Cl-Ar, e = 4-Br-Ar, f = Me Scheme 1. Synthesis of 13 and 14. Reagents and conditions: (i) CH₃I, CH₃CO₂Na, EtOH, rt; (ii) NH₂NH₂, EtOH, reflux; (iii) CS₂, KOH, EtOH, reflux; iv) α-bromocarboxylic acid, CH₃CO₂Na, EtOH, reflux. further cyclization and elimination of hydrogen sulfide. The new sulfur-linked tetracyclic compounds, 13 and 14, were prepared in good yield by treatment of 11 or 12 with α -bromophenylacetic acids or α -bromopropanoic acid in refluxing ethanol containing sodium acetate (Table 1). It should be, however, noted that α -bromopropanoic acid is much less reactive to 11 and 12 when compared to α -bromophenylacetic acids (entry 6, 12, Table 1). The structural assignment of 13 and 14 was based upon spectroscopic and microanalytical data. For example, 13a did not show the NH signal near at δ 13–14 in ¹H NMR spectrum and characteristic peak at 3210 cm⁻¹ in IR spectrum that have found in the precursor 11, but instead showed ¹H signals at δ 7.18–7.38 for aromatic protons and a singlet at δ 5.55 for benzylic proton indicating the formation of desired tetracyclic triazole product containing thiophenylacetic acid. The mass spectrum of 13a showed a molecular ion peak at $m/z = 382 \text{ (M}^+)$ for $C_{16}H_{10}N_6O_2S_2$, and also showed ions at m/z = 364, 338 and 248 which could be attributed to the loss of H₂O and CO₂, respectively, and cleavage of sulfur bond from the molecular ion. Table 1. Preparation of compounds 13a-f and 14a-f | Entry | R | Product | Mp (°C) | Yield (%) ^a | |-------|--------|---------|---------|------------------------| | 1 | Ar | 13a | 223-224 | 71 | | 2 | 2-ClAr | 13b | 246-247 | 78 | | 3 | 3-ClAr | 13c | 243-244 | 77 | | 4 | 4-ClAr | 13d | 240-242 | 86 | | 5 | 4-BrAr | 13e | 266-267 | 66 | | 6 | Me | 13f | 122-123 | 38 | | 7 | Ar | 14a | 202-203 | 73 | | 8 | 2-ClAr | 14b | 217-218 | 82 | | 9 | 3-ClAr | 14c | 237-239 | 75 | | 10 | 4-ClAr | 14d | 208-210 | 80 | | 11 | 4-BrAr | 14e | 243-245 | 72 | | 12 | Me | 14f | 102-104 | 40 | ^aIsolated yields. #### **CONCLUSION** In conclusion, we report the synthesis of new sulfurlinked tetracyclic thienotriazolopyrimidine compounds 13 and 14, respectively, from 5 and 6 through cyclization of hydrazine derivatives 9 or 10 with carbon disulfide, and the subsequent reaction with α -bromophenylacetic acids or α -bromopropanoic acid. Further biological work on IL-6/STAT3 inhibitory activity is under way. **Acknowledgments.** This work was supported by the Korea Research Foundation (project number 2010-0021038). #### REFERENCES - 1. Aaronson, D.; Horvath, C. Science 2002, 296, 1653. - Yu, H.; Pardoll, D.; Jove, R. S. Nat. Rev. Cancer 2009, 9, 798 - 3. Rose-John, S.; Waetzig, G. H.; Schller, J.; Gratzinger, J.; Seegert, D. *Expert Opin. Ther. Targets* **2007**, *11*, 613. (b) Adachi, Y.; Yoshio-Hoshino, N.; Nishimoto, N. *Curr. Pharm. Des.* **2008**, *14*, 1217. - (a) Lauria, A.; Abbate, I.; Patella, C.; Martorana, A.; Dattolo, G.; Almerico, A. M. Eur. J. Med. Chem. 2013, 62, 416. (b) Rizk, O. H.; Shaaban, O. G.; El-Ashmawy, I. M. Eur. J. Med. Chem. 2012, 55, 85. (c) Liu, Y.; Esteva-Font, C.; Yao, C.; Phuan, P. W.; Verkman, A. S.; Anderson, M. O. Bioorg. Med. Chem. Lett. 2013, 23, 3338. (d) Guetzoyan, L. J.; Spooner, R. A.; Lord, J. M.; Roberts, L. M.; Clarkson, - G. J. Eur. J. Med. Chem. 2010, 45, 275. (e) Nagamatsu, T.; Ahmed, S.; Hossion, A. M. L.; Ohno, S. Heterocycles 2007, 73, 777. - (a) Chen, Q.; Zhu, X.-L.; Jiang, L.-L.; Yang, G.-F. Eur. J. Med. 2008, 43, 595. (b) Bali, U.; et al. Bioorg. Med. Chem. Lett. 2012, 22, 824. (c) Almajan, G. L.; Innocenti, A.; Puccetti, L.; Manole, G.; Barbuceanu, S.; Saramet, I.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2005, 15, 2347. (d) Contour-Galcéra, M. O.; Sidhu, A.; Plas, P.; Roubert, P. Bioorg. Med. Chem. Lett. 2005, 15, 3555. (e) Micheli, F.; et al. J. Med. Chem. 2010, 53, 374. - (a) Whang, J.; Song, Y.-H. J. Heterocycl. Chem. 2013, 50, 603. (b) Lee, H. J.; Kim, S. M.; Song, Y.-H. Heterocycl. Commun. 2013, 19, 101. (c) Whang, J.; Song, Y.-H. Heterocycles 2012, 85, 155. (d) Song, Y.-H.; Son, H. Y. J. Heterocycl. Chem. 2011, 48, 597. (e) Song, Y.-H.; Moon, J. Heterocycl. Commun. 2011, 17, 135. (f) Song, Y.-H.; Son, H. Y. J. Heterocycl. Chem. 2010, 47, 1183. (g) Son, H. Y.; Song, Y.-H. Bull. Korean Chem. Soc. 2010, 31, 2242. (h) Song, Y.-H.; Jo, B. S. J. Heterocycl. Chem. 2009, 46, 1132. (i) Jo, B. S.; Son, H. Y.; Song, Y.-H. Heterocycles 2008, 75, 3091. - 7. Rho, M. C.; Song, Y.-H.; Lee, S. W.; Park, C. S.; Oh, H. M. Novel Heterocyclic Compounds and Use Thereof. Korean Patent, Appl. 10-2013-0008307, 2013.