DOI QR코드

DOI QR Code

CMP 공정중 박막 종류에 따른 AE 신호 분석

Analysis of Acoustic Emission Signal Sensitivity to Variations in Thin-film Material Properties During CMP Process

  • 투고 : 2014.04.16
  • 심사 : 2014.05.14
  • 발행 : 2014.08.01

초록

본 연구에서는 화학 기계 연마(CMP) 공정 중 발생하는 다양한 영역대의 신호를 분석하기 위하여 음향 방출 센서(AE)를 이용하였다. 특히 음향 방출 센서는 공정 중 발생하는 기계적 소음을 전기적 신호로 변환하기 용이하며, 특히 고주파 영역대의 신호를 감지하기에 용이하다. 그래서 본 연구에서는 CMP 장비에 음향 방출 센서를 부착하여 CMP 공정 중 발생하는 신호를 동시에 획득하였다. 본 음향 방출 모니터링 시스템은 CMP 공정 조건 변화 및 패드, 슬러리, 웨이퍼와 같은 소모재의 변화에 따른 신호분석을 하기 위해 제작 되었다. 본 연구에서는 산화막 웨이퍼와 구리막 웨이퍼에 본 시스템을 적용하였다. 음향 방출 센서로 획득한 신호로 Raw 신호 분석, 주파수 분석, 진폭 분석을 통해서 CMP 공정중 발생하는 현상을 분석하였다. 최종적으로 다양한 대역폭의 신호를 음향 방출 센서로 획득하여 CMP 공정 모니터링이 가능함을 확인하고자 하였다.

In this study, an acoustic emission (AE) sensor was used for measuring the abrasive and molecular-scale phenomena in chemical mechanical polishing (CMP). An AE sensor is a transducer that converts a mechanical wave into an electrical signal, and is capable of acquiring high-level frequencies from materials. Therefore, an AE sensor was installed in the CMP equipment and the signals were measured simultaneously during the polishing process. In this study, an AE monitoring system was developed for investigating the sensitivity of the AE signal to (a) the variations in the material properties of the pad, slurry, and wafer and (b) the change in conditions during the CMP process. This system was adapted to Oxide and Cu CMP processes. AE signal parameters including AE raw frequency, FFT, and amplitude were analyzed for understanding the abrasive and molecular-level phenomena in the CMP process. Finally, we verified that AE sensors with different bandwidths could function in complementary ways during CMP process monitoring.

키워드

참고문헌

  1. Berman, M., Bibby, T. and Smith, A., 1998, "Review of In Situ & In-line Detection for CMP Applications," Semiconductor Fabtech, 8th edition , pp. 267-274.
  2. Lee, Y., Chang, A. K. and Dornfeld, D. A., 2002, "Acoustic Emision Monitoring for the Diamond Machinging of Oxygen-free High-conductivity Copper," Journal of Materials Processing Technology, Vol 127, No.2, pp. 199-205. https://doi.org/10.1016/S0924-0136(02)00126-7
  3. Wang, L., Gao and Rovert, X., 2006, "Condition Monitoring and Control for Intelligent Manufacturing," Springer, pp. 126-129.
  4. Karpuschewski, B., Wehmeier, M. and Inasaki, I., 2000, "Grinding Monitoring System Based on Power and Acoustic Emission Sensor," CIRP Annals-Manufacturing Technology, Vol 49, Issue 1, pp. 235-240. https://doi.org/10.1016/S0007-8506(07)62936-9
  5. Lturrospe, A., Dornfeld, D. A., Atxa, V. and Abete, J. A., 2005,"Biceptrum Based Blind Idendification of the Acoustic Emission(AE) Signal in Precision Turning," Mechanical Systems and Signal Processing, Vol 19, Issue 3, pp. 447-466. https://doi.org/10.1016/j.ymssp.2003.12.006
  6. Choi, J. H. and Lee, D. E., 2005, "In-Situ Acoustic Emission Monitoring of Surface Chemical Reactions for Copper CMP," CMP-MIC, pp. 415-422.
  7. Jeong, H. D., Kim, H. J., Lee, S. H. and Dornfeld, D. A., 2006, "Multi-Sensor Monitoring System in Chemical Mechanical Planarization(CMP) for Correlations with Process Issues," CIRP Annals-Manufacturing Technology, Vol 55, Issue 1, pp. 325-328. https://doi.org/10.1016/S0007-8506(07)60427-2
  8. Lee, H. S., Park, B. Y., Kim, G. Y., Kim, H. J., Seo, H. D. and Jeong, H. D., 2004, "Effects of Friction Energy on Polishing Results in CMP Process," Trans. Korean Soc. Mech. Eng. A, Vol. 28, No. 11, pp. 1807-1812. https://doi.org/10.3795/KSME-A.2004.28.11.1807
  9. Lee, H. S., Park, B. Y., Seo, H. D., Jang, W. M. and Jeong, H. D., 2005, "A Study on the CMP of Lithium Tantalate Wafer," Trans. Korean Soc. Mech. Eng. A, Vol. 29, No. 9, pp. 1276-1281. https://doi.org/10.3795/KSME-A.2005.29.9.1276