DOI QR코드

DOI QR Code

습식자기연마(WMAP)에서 입자의 구속과 가공효과에 관한 연구

Study on Abrasive Adhesion and Polishing Effect in Wet Magnetic Abrasive Polishing

  • 투고 : 2014.04.19
  • 심사 : 2014.05.02
  • 발행 : 2014.08.01

초록

일반적인 자기연마가공에서 브러쉬는 연마입자와 자성입자 그리고 약간의 절삭유가 혼합되어 형상을 갖춘다. 그러나 공구가 고속으로 회전하게 되면 대부분의 연마입자는 원심력의 증가로 공구에서부터 떨어져나간다. 이러한 현상은 가공 효율을 저하시키는 결과를 야기한다. 이러한 문제점을 해결할 수 있는 방법 중 하나는 절삭유 대신에 실리콘 겔과 같은 고점성의 물질을 사용하여 입자의 구속을 증가시키는 것이다. 연마입자의 과도한 탈락에 대응하는 또 다른 방법은 습식자기연마(WMAP)이다. 습식자기연마는 절삭유가 공작물의 표면에 충분히 공급된 상태의 자기연마를 의미한다. 본 연구에서는 습식자기연마에서 구속된 연마입자의 구속량과 표면거칠기 향상의 상관관계를 분석하였다. 그 결과 습식자기연마에서 연마입자의 구속률이 낮음에도 불구하고 표면거칠기가 더 많이 향상됨을 알 수 있었다.

In a conventional magnetic abrasive polishing process, the polishing abrasives are mixed with ferrous particles and slight cutting oil to form a cluster of abrasives. However, when a tool rotates at a high revolution speed, most of the polishing abrasives are scattered away from it due to the increase in centrifugal force. This phenomenon directly reduces the polishing efficiency. The use of a highly viscous matter such as silicone gel instead of cutting oil for mixing is one method to solve this problem and increase abrasive adhesion. Another method to avoid high abrasive scattering is the application of wet magnetic abrasive polishing (WMAP). In WMAP, abundant mineral oil is preliminarily applied to the workpiece surface. This study experimentally evaluated the effect of WMAP on abrasive adhesion. The relationship between the amount of working abrasives and polishing conditions was characterized. Despite the lower adhesion ratio of polishing abrasives, the surface roughness was found to be significantly improved as the result of WMAP.

키워드

참고문헌

  1. Kwak, T. S. and Kwak, J. S., 2012, "Magnetic Abrasive Polishing and Its Application," Journal of the Korean Society Precision Engineering, Vol. 29, No. 3, pp. 226-272. https://doi.org/10.7736/KSPE.2012.29.3.266
  2. Chang, G. W., Yan, B. H. and Hsu, R. T., 2002, "Study on Cylindrical Magnetic Abrasive Finishing Using Unbonded Magnetic Abrasives," International Journal of Machine Tools & Manufacture, Vol. 42, pp. 575-583. https://doi.org/10.1016/S0890-6955(01)00153-5
  3. Sin, D. K., Jain, V. K., Raghuram, V. and Komanduri, R., 2005, "Analysis of Surface Texture Generated by a Flexible Magnetic Abrasive Brush," WEAR, Vol. 259, pp. 1254-1261 https://doi.org/10.1016/j.wear.2005.02.030
  4. Kwak, T. S. and Kwak, J. S., 2013, "Magnetic Abrasive Polishing Technology with Ceramic Particles," Journal of the Korean Society Precision Engineering, Vol. 30, No. 12, pp. 1253-1258. https://doi.org/10.7736/KSPE.2013.30.12.1253
  5. Kim, S. O. and Kwak, J.S., 2010, "Study on Performance Improvement in Magnetic Abrasive Polishing Assisted by Silicone Gel Medium," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 10, pp. 1499-1505. https://doi.org/10.3795/KSME-A.2010.34.10.1499
  6. Shimada, K., Shuchi, S., Kanno, H., Wu, Y. and Kamiyama, S., 2005, "Magnetic Cluster and Its Applications," Journal of the Magnetism and Magnetic Materials, Vol. 289, pp. 9-12 https://doi.org/10.1016/j.jmmm.2004.11.004
  7. Lee, Y. C., Kim, K. S., Kwak, T. S. and Lee, J. R., 2013, "An Experimental Study on Magnetic Assisted Polishing of Polycarbonate Plate for Recycling," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 12, No. 3, pp. 1-6
  8. Furuya, T., Wu, Y., Nomura, M., Shimada, K. and Yamamoto, K., 2008, "Fundamental Performance of Magnetic Compound Fluid Polishing Liquid in Contact-Free Polishing of Metal Surface," Journal of Materials Processing Technology, Vol. 201, pp. 536-541 https://doi.org/10.1016/j.jmatprotec.2007.11.299