DOI QR코드

DOI QR Code

Strength and Deformation Characteristics, and Numerial Analysis for Cement Admixed Clay and Composite Ground

시멘트 혼합토 및 복합지반의 강도, 변형 특성 및 수치해석

  • Jeon, Jesung (Department of Construction Information Engineering, Induk University)
  • Received : 2014.05.14
  • Accepted : 2014.07.03
  • Published : 2014.08.01

Abstract

In this research, the composite grounds including original clay and soil-cement were constructed for conducting uniaxial compression test. Strength and deformation properties were analysed using results of laboratory tests with variations of water content of clay, replacement ratio and cement content. Numerical simulation using 3D distinct element method was conducted for soil cement. For strength of composite ground that contains more than cement contents of 15 %, it is more effective to increase cement content than increase of replacement ratio. Strength and elastic modulus of composite ground could be predicted by regression equations using uniaxial compression strength of clay, cement content of soil cement and replacement ratio. For strength and elastic modulus of soil cement, which is most important things for predicting final strength and elastic modulus of composite ground, numerical simulation using the distinct element method adapted bonding model could be used to verify laboratory test, and predict strength and elastic modulus.

본 연구에서는 원지반 점토와 시멘트 혼합토를 포함하는 복합지반을 조성하고 이에 대한 실내 일축압축강도 시험을 통해 원지반 점토 함수비 및 치환율, 시멘트 함유율 등에 따른 강도 및 변경 특성치를 분석하였으며, 혼합토에 대한 개별요소 수치모델링을 수행하였다. 시멘트 함유율 15 % 이상에서는 최종적인 복합지반의 강도에 있어 치환율을 증가시키는 것보다 시멘트 함유량 증가 등을 통한 혼합토의 강도를 증가시키는 것이 더욱 유리함을 알 수 있었으며, 회귀분석을 통해 원지반 점성토의 일축압축강도와 시멘트 혼합토의 시멘트 함유율, 복합지반 치환율을 이용하여 최종적인 복합지반의 일축압축강도 및 탄성계수 예측이 가능하였다. 치환율과 함께 최종적인 복합지반의 강도 및 변형 특성치 예측에 가장 중요한 요소인 시멘트 혼합토의 일축압축강도는 실내시험 및 본딩모델이 적용된 3차원 개별요소 수치모델링을 통해 그 검증과 예측이 가능하였다.

Keywords

References

  1. Bergado, D. T., Ruenkrairergsa, T., Taesiri, Y. and Balasubramaniam, A. S. (1999), Deep soil mixing to reduce embankment settlement, Ground Improvement, Vol. 3, No. 3, pp. 145-162. https://doi.org/10.1680/gi.1999.030402
  2. Cundall, P. A. (2001), A discontinuous future for numerical modelling in feomechanics, Proceedings of the Institution of Civil Engineers, London, UK., Geotechnical Engineering, Vol. 149, No. 1, pp. 41-48.
  3. Cundall, P. A. and Strack, O. D. L. (1979), A discrete numerical model for granular assemblies, Geotechnique, Vol. 29, No. 1, pp. 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  4. Horpibulsuk, S., Miura, N. and Nagaraj, T. S. (2003), Assessment of strength development in cement-admixed high water content clays with Abrams's law as a basis, Geotechnique, Vol. 53, No. 4, pp. 439-444. https://doi.org/10.1680/geot.2003.53.4.439
  5. Itasca Consulting Group, Inc. (2004), PFC3D user's guide, Minneapolis, Minnesota, pp. 3-31-3-84.
  6. Jeon, J. S., Kim, K. Y. and Shin, D. H. (2006), Modelling of large triaxial test with rockfill materials by distinct element method, Journal of Korean Geotechnical Society, Vol. 22, No. 10, pp. 111-120.
  7. Jeon, J. S., Park, M. C. and Lee, S. (2013), Strength prediction of mixing condition and curing time using cement-admixed marine clay, Journal of the Korean Geotechnical Society, Vol. 29, No. 12, pp. 45-56 (in Korean). https://doi.org/10.7843/kgs.2013.29.12.45
  8. Kamon, M. and Bergado, D. T. (1991), Ground improvement techniques, Proc. 9th Asian Regional Conf. on Soil Mechanics and Foundation Engineering, Bangkok, Thailand, Vol. 2, pp. 526-534.
  9. Kim, S. G., Kim, W. J., Kang, H. B. and Kim, J. R. (2006), A study of engineering characteristics of soil-cement, KSCE Conference, pp. 4362-4365 (in Korean).
  10. Lee, J. M., Kwon, Y. C. and Lee, H. G. (2009), Experimental study on characteristics of soil-cement include lean mixed concrete for dredged and reclaimed ground, Korean Geo-Environmental Conference, pp. 113-116 (in Korean).
  11. Lee, W. H. and Lim, H. D. (2007), Analysis of fine particle transfer and shear strength increase using PFC in permeation grouting, Journal of Korean Geotechnical Society, Vol. 23, No. 11, pp. 49-58 (in Korean).
  12. Ting, J. M., Corkum, B. T., Kauffiman, C. R. and Greco, C. (1989), Discrete numerical model for doil mechanics, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 115, No. 3, pp. 379-398. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(379)
  13. Watabe, Y., Tsuchida, T., Furuno, T. and Yuasa, H. (2000), Mechanical characteristics of a cement treated dredge soil utilized for waste reclamation landfill, Proc. Coastal Geotechnical Engineering in Practice, Yokohama, Japan, pp. 739-745.