DOI QR코드

DOI QR Code

Congestion Control Scheme for Efficient Multimedia Transmission in Broadband Wireless Networks

광대역 무선 네트워크에서 효율적인 멀티미디어 전송을 위한 혼잡 제어 기법

  • Lee, Eunjae (Department of Communications Engineering, Kwangwoon University) ;
  • Chung, Kwangsue (Department of Communications Engineering, Kwangwoon University)
  • Received : 2014.04.04
  • Accepted : 2014.06.04
  • Published : 2014.07.31

Abstract

TCP does not ensure the bandwidth and delay bound required for multimedia streaming services in broadband wireless network environments. In this paper, we propose a new congestion control scheme for efficient multimedia transmission, called COLO TCP (Concave Increase Slow Start Logarithmic Increase Congestion Avoidance TCP). The COLO TCP prevents the burst packet loss by applying the concave increase algorithm in slow start phase. In the congestion avoidance phase, COLO TCP uses the logarithmic increase algorithm that quickly recovers congestion window after packet loss. To highly utilize network bandwidth and reduce packet loss ratio, COLO TCP uses additive increase algorithm and adaptive decrease algorithm. Through simulation results, we prove that our COLO TCP is more robust for random loss. It is also possible for efficient multimedia transmission.

광대역 무선 네트워크 환경에서 TCP의 혼잡 제어 알고리즘은 미디어 스트리밍 서비스가 요구하는 대역폭 및 지연 한계를 보장하기 어렵다. 본 논문에서는 효율적인 멀티미디어 전송을 위한 혼잡 제어 기법인 COLO TCP(Concave Increase Slow Start Logarithmic Increase Congestion Avoidance TCP)를 제안하였다. COLO TCP는 저속증가 (Slow Start) 구간에서 오목 증가 (Concave Increase) 알고리즘을 적용하여 다량의 패킷 손실을 방지한다. 혼잡회피 (Congestion Avoidance) 구간에서는 패킷 손실 이후 감소된 혼잡 윈도우를 빠르게 복구하는 로그 증가(Logarithmic Increase) 알고리즘을 사용한다. 또한 높은 네트워크 활용도와 패킷 손실률의 감소를 위해 가산 증가(Additive Increase) 알고리즘과 적응 감소 (Adaptive Decrease) 알고리즘을 적용하였다. 실험 결과를 통해 COLO TCP가 효율적인 멀티미디어 데이터 전송이 가능한 것을 확인하였다.

Keywords

References

  1. O. Oyman, J. Foerster, Y. Tcha, and S. Lee, "Toward Enhanced Mobile Video Services over WiMAX and LTE," IEEE Communications Magazine, vol. 48, no. 8, pp. 68-76, August 2010. https://doi.org/10.1109/MCOM.2010.5534589
  2. G. Thompson and Y. Chen, "IPTV: Reinventing Television in the Internet Age," IEEE Internet Computing, vol. 12, no. 3, pp. 11-14, May 2009.
  3. C. Begen, T. Akgul, and M. Baugher, "Watching Video over the Web Part 1: Streaming Protocols," IEEE Internet Computing, vol. 15, no. 2, pp. 54-63, March-April 2011. https://doi.org/10.1109/MIC.2010.155
  4. S. Floyd, S. Ratnasamy, and S. Shenker, "Modifying TCP's Congestion Control for High Speeds," http://www.icir. org/floyd/hstcp.html, pp. 1-5, May 2002.
  5. T. Kelly, "Scalable TCP: Improving Performance in HighSpeed Wide Area Networks," ACM SIGCOMM Computer Communication Review, vol. 33, no. 2, pp. 83-91, February 2003.
  6. S. Floyd, "HighSpeed TCP for Large Congestion Windows," RFC 3649, December 2003.
  7. S. Ha, I. Rhee, and L. Xu, "CUBIC: A New TCP-friendly High-speed TCP Variant," ACM SIGOPS Operating System Review, vol. 42, no. 5, pp. 64-74, July 2008.
  8. K. Tan, J. Song, Q. Zhang, and M. Sridharan, "A Compound TCP Approach for High-speed and Long Distance Networks," in Proc. of the IEEE INFOCOM, pp. 1-12, April 2006.
  9. V. Konda and J. Kaur, "RAPID: Shrinking the Congestioncontrol Timescale," in Proc. of the IEEE INFOCOM, pp. 1-9, April 2009.

Cited by

  1. The Congestion Estimation based TCP Congestion Control Scheme using the Weighted Average Value of the RTT vol.16, pp.3, 2015, https://doi.org/10.9728/dcs.2015.16.3.381