DOI QR코드

DOI QR Code

Preparation and Luminescence Properties of Spherical Sr4Al14O25:Eu2+ Phosphor Particles by a Liquid Synthesis

액상법을 이용한 구상의 Sr4Al14O25:Eu2+ 형광체의 합성 및 발광 특성

  • Lee, Jeong (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Sungho (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Nahm, Sahn (Korea University) ;
  • Jung, Ha-Kyun (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 이정 (한국화학연구원 화학소재연구본부) ;
  • 최성호 (한국화학연구원 화학소재연구본부) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 정하균 (한국화학연구원 화학소재연구본부)
  • Received : 2014.04.22
  • Accepted : 2014.06.12
  • Published : 2014.07.27

Abstract

A spherical $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was $1,100^{\circ}C$. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the $4f^65d{\rightarrow}4f^7$ electronic transitions of $Eu^{2+}$. The critical quenching-concentration of $Eu^{2+}$ in the synthesized $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.

Keywords

References

  1. T. Nishida, H. Saito and N. Kobayashi, Appl. Phys. Lett., 79(6), 711 (2001). https://doi.org/10.1063/1.1390485
  2. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho and G. C. Kim, Appl. Phys. Lett., 84(15), 2931 (2004). https://doi.org/10.1063/1.1695441
  3. P. Schlotter, R. Schmidt and J. Schneider, Appl. Phys. Mater. Sci. Process., 64(4), 417 (1997). https://doi.org/10.1007/s003390050498
  4. S. Lee and S. Y. Seo, J. Electrochem. Soc., 149(11), J85 (2002). https://doi.org/10.1149/1.1511755
  5. Y. Uchida and T. Taguchi, Opt. Eng., 44(12), 124003 (2005). https://doi.org/10.1117/1.2131071
  6. G. Blasse, J. Solid State Chem., 62(2), 207 (1986). https://doi.org/10.1016/0022-4596(86)90233-1
  7. T. Katsumata, K. Sasajima, T. Nabae, S. Komuro and T. Morikawa, J. Am. Ceram. Soc., 81(2), 413 (1998).
  8. F. C. Palilla, A. K. Levine and M. R. Tomkus, J. Electrochem. Soc., 115(6), 642 (1968). https://doi.org/10.1149/1.2411379
  9. A. L. N. Stevels and A. D. M. S. Pauw, J. Electrochem. Soc., 123(5), 691 (1976). https://doi.org/10.1149/1.2132911
  10. B. Smets, J. Rutten, G. Hoeks and J. Verlijsdonk, J. Electrochem. Soc., 136(7), 2119 (1989). https://doi.org/10.1149/1.2097210
  11. V. Abbruscato, J. Electrochem. Soc., 118(6), 930 (1971). https://doi.org/10.1149/1.2408226
  12. W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang and R. S. Liu, J. Chem. Chem. Eng., 5(7), 638 (2011).
  13. D. Jia, Y. Wang, X. Guo, K. Li, Y. K. Zou and W. Jia, J. Electrochem. Soc., 154(1), J1 (2007). https://doi.org/10.1149/1.2372589
  14. H. K. Jung, D. W. Lee and Y. C. Park, Solid State Phenom., 124, 391 (2007).
  15. D. Jia, Electrochem. Solid State Lett., 9(10), H93 (2006). https://doi.org/10.1149/1.2266159
  16. M. Capron, F. Fayon, D. Massiot and A. Douy, Chem. Mater., 15(2), 575 (2003). https://doi.org/10.1021/cm0213265
  17. J. H. Jean and T. A. Ring, Colloid. Surface., 29(3), 273 (1988). https://doi.org/10.1016/0166-6622(88)80123-9
  18. C. -S. Fang and Y. -W. Chen, Mater. Chem. Phys., 78(3), 739 (2003). https://doi.org/10.1016/S0254-0584(02)00416-9
  19. C. Chang, Z. Yuan and D. Mao, J. Alloy. Comp., 415(1), 220 (2006). https://doi.org/10.1016/j.jallcom.2005.04.219
  20. D. Wang, M. Wang and G. Lu, J. Mater. Sci., 34(20), 4959 (1999). https://doi.org/10.1023/A:1004759621850
  21. M. S. Jang, W. H. Kim, Y. R. Kang, S. B. Song, J. P. Kim and J. H. Kim, Int. J. Appl. Ceram. Tech., 10(4), 617 (2013). https://doi.org/10.1111/ijac.12105
  22. W. Minquan, D. Wang and L. Guanglie, Mater. Sci. Eng. B., 57(1), 18 (1998). https://doi.org/10.1016/S0921-5107(98)00255-4
  23. D. Wang, Q. Yin, Y. Li and M. Wang, J. Lumin., 97(1), 1 (2002). https://doi.org/10.1016/S0022-2313(01)00413-6