DOI QR코드

DOI QR Code

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S. (School of Materials Science and Engineering, ERI, Gyeongsang National University) ;
  • Choi, Hyun Ji (School of Materials Science and Engineering, ERI, Gyeongsang National University) ;
  • Young, Hur Bo (School of Materials Science and Engineering, ERI, Gyeongsang National University)
  • 투고 : 2014.06.16
  • 심사 : 2014.06.27
  • 발행 : 2014.07.27

초록

The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

키워드

참고문헌

  1. S. Ankem, G. K. Scarr, I. L. Caplan, J. C. Williams, S. R. Sergle and H. B. Bomberger: Proceedings of 6th World Conference on Titanium, 3, 265 (1988).
  2. P. J. Bania: Jom, 46, 16 (1994).
  3. H. Onodera, Y. Ro, T. Yamagata and M. Yamazaki: Proceedings of 5th International Conference on Titanium, 3, 1883890 (1984).
  4. C. F. Yolton, F. H. Froes and R. F. Malone, Metall. Trans. A. 10, 132 (1979). https://doi.org/10.1007/BF02686421
  5. H. K. D. H. Bhadeshia: Neural networks mater. sci., ISIJ Int., 39, 966 (1999). https://doi.org/10.2355/isijinternational.39.966
  6. Z. Guo and W. Sha, Comput. Mater. Sci., 29, 12 (2004). https://doi.org/10.1016/S0927-0256(03)00092-2
  7. S. Malinov and W. Sha, Comput. Mater. Sci., 28, 179 (2003). https://doi.org/10.1016/S0927-0256(03)00106-X
  8. Z. Guo, S. Malinov and W. Sha, Comput. Mater. Sci., 32, 1 (2005). https://doi.org/10.1016/j.commatsci.2004.05.004
  9. R. Boyer, G. Welsch and E. W. Collings: Materials Properties Handbook: Titanium Alloys (1994).
  10. P. A. Blenkinsop, W. J. Evans and H. M. Flower: Proc. 8th World Conf. on Titanium (1995).
  11. R. Boyer, G. Welsch and E. W. Collings: Materials Properties Handbook: Titanium Alloys (1994).
  12. E. K. Molchanova: Phase Diagrams of Titanium Alloys (1965).
  13. J. E. Dayhoff: Neural Network Architectures: An Introduction (1990).
  14. R. P. Lippmann: An Introduction to neural networks, IEEE ASSP Magazine 4, 4 (1987). https://doi.org/10.1109/MASSP.1987.1165575
  15. N. S. Reddy, J. Krishnaiah, S. G. Hong and J. S. Lee, Mater. Sci. Eng. A, 508, 93 (2009). https://doi.org/10.1016/j.msea.2008.12.022
  16. N. S. Reddy, C. S. Lee, J. H. Kim and S. L. Semiatin, Mater. Sci. Eng. A, 434, 218 (2006). https://doi.org/10.1016/j.msea.2006.06.104
  17. D. M. Hamby, Environ. Monit. Assess., 32, 135 (1994). https://doi.org/10.1007/BF00547132
  18. J. J. Montano and A. Palmer, Neural Comput. Appl., 12, 119 (2003). https://doi.org/10.1007/s00521-003-0377-9
  19. V. M. H. Coupe, L. C. Van Der Gaag and J. D. F. Habbema, Knowledge Engineering Review 15, 215 (2000). https://doi.org/10.1017/S0269888900003027
  20. J. D. Olden and D. A. Jackson, Ecol. Modeling, 154, 135 (2002). https://doi.org/10.1016/S0304-3800(02)00064-9
  21. C. S. Zhan, X. M. Song, J. Xia and C. Tong, Environ. Modeling and Software, 41, 39 (2013). https://doi.org/10.1016/j.envsoft.2012.10.009
  22. N. S. Reddy, A. K. Prasada Rao, J. Krishnaiah, M. Chakraborty and B. S. Murty, J. Mater. Eng. Perform., 22, 696 (2013). https://doi.org/10.1007/s11665-012-0334-9
  23. S. K. Koduri, Ph.D. Thesis, pp. 49-50, The Ohio State University, U.S.A (2010)
  24. G. Lutjering, J. C. Williams and A. Gysler, World Scientific, Singapore, 1998, from http://www.asianscientist. com/books/wp-content/uploads/2013/05/4311_chap01.pdf.

피인용 문헌

  1. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys vol.30, pp.8, 2016, https://doi.org/10.1007/s12206-016-0723-3