DOI QR코드

DOI QR Code

Effects of Exercise Intensity on PGC-1α, PPAR-γ, and Insulin Resistance in Skeletal Muscle of High Fat Diet-fed Sprague-Dawley Rats

운동 강도 차이가 고지방식이 Sprague-Dawley Rat의 골격근 내 PGC-1α, PPAR-γ 및 인슐린 저항에 미치는 영향

  • Jung, Hyun-Lyung (Exercise Metabolism Laboratory, Department of Physical Education, Kyungpook National University) ;
  • Kang, Ho-Youl (Exercise Metabolism Laboratory, Department of Physical Education, Kyungpook National University)
  • 정현령 (경북대학교 사범대학 체육교육과 운동대사 실험실) ;
  • 강호율 (경북대학교 사범대학 체육교육과 운동대사 실험실)
  • Received : 2014.04.21
  • Accepted : 2014.06.26
  • Published : 2014.07.31

Abstract

This study investigated the effects of exercise intensity on PGC-$1{\alpha}$, PPAR-${\gamma}$, and insulin resistance in skeletal muscle of high fat diet-fed Sprague-Dawley rats. Forty rats were randomly divided into five groups: sedentary control group (SED), high fat diet group (HF), high fat diet+low-intensity exercise group (HFLE, 22 m/min, 60 min, 6 days/week), high fat diet+moderate-intensity exercise group (HFME, 26 m/min, 51 min), and high fat diet+high-intensity exercise group (HFHE, 30 m/min, 46 min). After 4 weeks of high fat diet and endurance exercise training, the lipid profiles, insulin, and glucose concentrations were determined in plasma. PGC-$1{\alpha}$, PPAR-${\gamma}$, and GLUT-4 contents were measured in plantaris muscle. The rate of glucose transport in soleus muscle was determined under submaximal insulin concentration ($1,000{\mu}IU/mL$ insulin, 20 min) during muscle incubation. Plasma glucose during oral glucose tolerance test in HF was significantly greater than that in SED, and plasma glucose levels in the three exercise (EX) groups were significantly lower that those in SED and HF at 30 and 60 min, respectively (P<0.05). Plasma insulin levels in the EX groups were significantly reduced by 60 min compared to that in HF (P<0.05). The protein expression level of PGC-$1{\alpha}$ as well as muscle glucose uptake were significantly higher in SED and HF than those in the three EX groups (P<0.05), and HFHE showed significantly higher levels than HFLE and HFME. Expression levels of GLUT-4 and PPAR-${\gamma}$ were significantly higher in the HFLE, HFME, and HFHE groups compared to the SED and HF (P<0.05). Therefore, the results of this study indicate that 4 weeks of high fat diet significantly developed whole body insulin resistance but did not affect PGC-$1{\alpha}$, PPAR-${\gamma}$, or the glucose transport rate in skeletal muscle, and exercise training was able to attenuate deteriorated whole body insulin resistance due to high fat diet. In addition, high intensity training significantly affected PGC-$1{\alpha}$ expression and the glucose transport rate of skeletal muscle in comparison with low and middle training intensities.

본 연구에서는 4주간의 고지방식이와 지구성 운동이 골격근의 PGC-$1{\alpha}$, PPAR-${\gamma}$ 및 인슐린 저항성(glucose uptake, GLUT-4)에 미치는 영향을 분석하였다. 인슐린 민감도 지표인 혈당내성검사에서는 일반식이와 비교하여 고지방식이에서 포도당 투여 후 30분과 60분에서 유의하게 증가하였으며, 운동집단에서는 일반식이와 고지방식이집단에 비해 유의하게 감소한 것을 알 수 있었다. 골격근의 포도당 운반률, PGC-$1{\alpha}$, GLUT-4, PPAR-${\gamma}$의 결과에서는 일반식이에 비해 고지방식이집단에서 감소하는 경향이 나타났으나 통계적으로 유의한 차이가 없는 것으로 나타났다. 그러나 운동집단(저/중/고강도운동)에서는 일반/고지방식이집단과 비교하여 유의하게 증가한 것으로 나타났다. 운동집단의 운동강도 차이에서 GLUT-4와 PPAR-${\gamma}$는 집단 간 유의한 차이가 없는 것으로 나타났다. 그러나 골격근의 포도당 운반률과 PGC-$1{\alpha}$ 단백질 발현은 저/중강도 운동과 비교하여 고강도 운동이 유의하게 증가한 것을 알 수 있었다. 이상의 결과를 종합해 볼 때 4주간의 고지방식이는 whole body의 인슐린 저항성을 발생시켰으나 근육 내 인슐린 저항에는 영향을 미치는 못한 것으로 사료된다. 그러므로 추후 고지방식이의 함량, 섭취 기간 등을 고려한 연구가 필요할 것으로 생각된다. 또한 4주간의 지속적인 지구성 운동이 고지방식이로 인해 발생된 골격근 인슐린 저항성을 감소시키는데 효과적인으로 나타났으나 운동 강도에 따른 골격근의 포도당 운반률, PGC-$1{\alpha}$, GLUT-4, PPAR-${\gamma}$의 변화가 인슐린 저항성이 개선시켰다고 설명하기는 부족한 것으로 판단된다. 그러므로 추후 본 연구의 결과를 바탕으로 운동 형태(운동 기간, 운동강도)에 따른 골격근의 PGC-$1{\alpha}$와 insulin signalling pathway에 대한 세부적인 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ. 1985. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance:role of intramuscular accumulation of lipid metabolites. J Appl Physiol 100: 1467-1474.
  2. Mullen KL, Pritchard J, Ritchie I, Snook LA, Chabowski A, Bonen A, Wright D, Dyck DJ. 2009. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 296: R243-251. https://doi.org/10.1152/ajpregu.90774.2008
  3. Mullen KL, Smith AC, Junkin KA, Dyck DJ. 2007. Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats. Am J Physiol Endocrinol Metab 293: E83-90. https://doi.org/10.1152/ajpendo.00545.2006
  4. Zderic TW, Davidson CJ, Schenk S, Byerley LO, Coyle EF. 2004. High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise. Am J Physiol Endocrinol Metab 286: E217-225. https://doi.org/10.1152/ajpendo.00159.2003
  5. Benton CR, Wright DC, Bonen A. 2008. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl Physiol Nutr Metab 33: 843-862. https://doi.org/10.1139/H08-074
  6. Handschin C, Spiegelman BM. 2008. The role of exercise and PGC1$\alpha$ in inflammation and chronic disease. Nature 454: 463-469. https://doi.org/10.1038/nature07206
  7. Russell AP. 2005. PGC-1alpha and exercise: important partners in combating insulin resistance. Curr Diabetes Rev 1: 175-181. https://doi.org/10.2174/1573399054022811
  8. Russell AP, Hesselink MK, Lo SK, Schrauwen P. 2005. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 19: 986-988. https://doi.org/10.1096/fj.04-3168fje
  9. Kelly DP, Scarpulla RC. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18: 357-368. https://doi.org/10.1101/gad.1177604
  10. Knutti D, Kralli A. 2001. PGC-1, a versatile coactivator. Trends Endocrinol Metab 12: 360-365. https://doi.org/10.1016/S1043-2760(01)00457-X
  11. Puigserver P, Spiegelman BM. 2003. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24: 78-90. https://doi.org/10.1210/er.2002-0012
  12. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ. 2003. Regulation of hepatic fasting response by PPAR gamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci 100: 4012-4017. https://doi.org/10.1073/pnas.0730870100
  13. Sriwijitkamol A, Ivy JL, Christ-Roberts C, DeFronzo RA, Mandarino LJ, Musi N. 2006. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training. Am J Physiol Endocrinol Metab 290: E925-932. https://doi.org/10.1152/ajpendo.00429.2005
  14. De Filippis E, Alvarez G, Berria R, Cusi K, Everman S, Meyer C. 2008. Insulin-resistant muscle is exercise resistant:evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metab 294:E607-614. https://doi.org/10.1152/ajpendo.00729.2007
  15. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ. 2003. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100: 8466-8471. https://doi.org/10.1073/pnas.1032913100
  16. Matiello R, Fukui RT, Silva ME, Rocha DM, Wajchenberg BL, Azhar S, Santos RF. 2010. Differential regulation of PGC-1alpha expression in rat liver and skeletal muscle in response to voluntary running. Nutr Metab (Lond) doi:10.1186/1743-7075-7-36.
  17. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z. 2005. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280: 19587-19593. https://doi.org/10.1074/jbc.M408862200
  18. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, Cameron-Smith D. 2002. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 283: E66-72. https://doi.org/10.1152/ajpendo.00475.2001
  19. Garekani ET, Mohebbi H, Kraemer RR, Fathi R. 2011. Exercise training intensity/volume affects plasma and tissue adiponectin concentrations in the male rat. Peptides 32: 1008-1012. https://doi.org/10.1016/j.peptides.2011.01.027
  20. Srere PA. 1969. Citrate synthase. Methods Enzymol 13: 3-5. https://doi.org/10.1016/0076-6879(69)13005-0
  21. Young DA, Uhl JJ, Cartee GD, Holloszy JO. 1986. Activation of glucose transport in muscle by prolonged exposure to insulin. Effects of glucose and insulin concentrations. J Biol Chem 261: 16049-16053.
  22. Jung HL, Kang HY. 2010. Effects of endurance exercise and high-fat diet on insulin resistance and ceramide contents of skeletal muscle in Sprague-Dawley rats. J Korean Diabetes 34: 244-252. https://doi.org/10.4093/kdj.2010.34.4.244
  23. Paoli A, Pacelli QF, Moro T, Marcolin G, Neri M, Battaglia G, Sergi G, Bolzetta F, Bianco A. 2013. Effects of high-intensity circuit training, low-intensity circuit training and endurance training on blood pressure and lipoproteins in middle-aged overweight men. Lipids Health Dis 12: 131. https://doi.org/10.1186/1476-511X-12-131
  24. Racil G, Ben Ounis O, Hammouda O, Kallel A, Zouhal H, Chamari K, Amri M. 2013. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol 113: 2531-2540. https://doi.org/10.1007/s00421-013-2689-5
  25. Jang YS, Chae HW, Kang HY. 1999. Effects of low and high exercise training intensities on body composition of growing male rats. Korean J Obesity 8: 89-101.
  26. Bielohuby M, Sisley S, Sandoval D, Herbach N, Zengin A, Fischereder M, Menhofer D, Stoehr BJ, Stemmer K, Wanke R, Tschop MH, Seeley RJ, Bidlingmaier M. 2013. Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. Am J Physiol Endocrinol Metab 305: E1059-1070. https://doi.org/10.1152/ajpendo.00208.2013
  27. Leek BT, Mudaliar SR, Henry R, Mathieu-Costello O, Richardson RS. 2001. Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280: R441-447. https://doi.org/10.1152/ajpregu.2001.280.2.R441
  28. Dudley GA, Abraham WM, Terjung RL. 1982. Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol 53: 844-850.
  29. Gan SK, Kriketos AD, Ellis BA, Thompson CH, Kraegen EW, Chisholm DJ. 2003. Changes in aerobic capacity and visceral fat but not myocyte lipid levels predict increased insulin action after exercise in overweight and obese men. Diabetes Care 26: 1706-1713. https://doi.org/10.2337/diacare.26.6.1706
  30. Goodpaster BH, Katsiaras A, Kelley DE. 2003. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52: 2191-2197. https://doi.org/10.2337/diabetes.52.9.2191
  31. Tanaka S, Hayashi T, Toyoda T, Hamada T, Shimizu Y, Hirata M, Ebihara K, Masuzaki H, Hosoda K, Fushiki T, Nakao K. 2007. High-fat diet impairs the effects of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle. Metabolism 56: 1719-1728. https://doi.org/10.1016/j.metabol.2007.07.017
  32. Ivy JL. 2004. Muscle insulin resistance amended with exercise training: role of GLUT4 expression. Med Sci Sports Exerc 36: 1207-1211.
  33. Koshinaka K, Kawasaki E, Hokari F, Kawanaka K. 2009. Effect of acute high-intensity intermittent swimming on post-exercise insulin responsiveness in epitrochlearis muscle of fed rats. Metabolism 58: 246-253. https://doi.org/10.1016/j.metabol.2008.09.021
  34. Hansen PA, Nolte LA, Chen MM, Holloszy JO. 1985. Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol 85: 1218-1222.
  35. Holloway GP, Perry CG, Thrush AB, Heigenhauser GJ, Dyck DJ, Bonen A, Spriet LL. 2008. PGC-1alpha's relationship with skeletal muscle palmitate oxidation is not present with obesity despite maintained PGC-1alpha and PGC-1beta protein. Am J Physiol Endocrinol Metab 294: E1060-1069. https://doi.org/10.1152/ajpendo.00726.2007
  36. Liang H, Ward WF. 2006. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30: 145-151. https://doi.org/10.1152/advan.00052.2006
  37. Holloszy JO, Coyle EF. 1984. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol 56: 831-838.
  38. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16: 1879-1886. https://doi.org/10.1096/fj.02-0367com
  39. Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM. 2003. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52: 1888-1896. https://doi.org/10.2337/diabetes.52.8.1888
  40. Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. 2002. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296: 350-354. https://doi.org/10.1016/S0006-291X(02)00881-1
  41. Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T. 2000. cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 274: 350-354. https://doi.org/10.1006/bbrc.2000.3134
  42. Terada S, Tabata I, Higuchi M. 2004. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jpn J Physiol 54: 47-52. https://doi.org/10.2170/jjphysiol.54.47
  43. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. 2002. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277: 1645-1648. https://doi.org/10.1074/jbc.C100631200
  44. Jo JS, Jang HS, Yoon CS, Kim JC. 2006. Endurance training-induced expressions of PPAR-$\alpha$, PPAR-$\gamma$ and PGC-1$\alpha$ protein in skeletal muscles of rats. Korean J Exercise Nutrition 10: 289-296.
  45. Sherman WM, Katz AL, Cutler CL, Withers RT, Ivy JL. 1988. Glucose transport: locus of muscle insulin resistance in obese Zucker rats. Am J Physiol 255: E374-382.
  46. Willems ME, Brozinick JT Jr, Torgan CE, Cortez MY, Ivy JL. 1985. Muscle glucose uptake of obese Zucker rats trained at two different intensities. J Appl Physiol 70: 36-42.
  47. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. 1996. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859-2865. https://doi.org/10.1172/JCI118742
  48. Cortez MY, Torgan CE, Brozinick JT Jr, Ivy JL. 1991. Insulin resistance of obese Zucker rats exercise trained at two different intensities. Am J Physiol 261: E613-619.
  49. Koshinaka K, Sano A, Howlett KF, Yamazaki T, Sasaki M, Sakamoto K, Kawanaka K. 2008. Effect of high-intensity intermittent swimming on postexercise insulin sensitivity in rat epitrochlearis muscle. Metabolism 57: 749-756. https://doi.org/10.1016/j.metabol.2008.01.014
  50. Terada S, Yokozeki T, Kawanaka K, Ogawa K, Higuchi M, Ezaki O, Tabata I. 1985. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol 90: 2019-2024.