DOI QR코드

DOI QR Code

A note on nonparametric density deconvolution by weighted kernel estimators

  • Lee, Sungho (Department of Statistics, Daegu University)
  • Received : 2014.05.12
  • Accepted : 2014.07.04
  • Published : 2014.07.31

Abstract

Recently Hazelton and Turlach (2009) proposed a weighted kernel density estimator for the deconvolution problem. In the case of Gaussian kernels and measurement error, they argued that the weighted kernel density estimator is a competitive estimator over the classical deconvolution kernel estimator. In this paper we consider weighted kernel density estimators when sample observations are contaminated by double exponentially distributed errors. The performance of the weighted kernel density estimators is compared over the classical deconvolution kernel estimator and the kernel density estimator based on the support vector regression method by means of a simulation study. The weighted density estimator with the Gaussian kernel shows numerical instability in practical implementation of optimization function. However the weighted density estimates with the double exponential kernel has very similar patterns to the classical kernel density estimates in the simulations, but the shape is less satisfactory than the classical kernel density estimator with the Gaussian kernel.

Keywords

References

  1. Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvoluting a density. Journal of the American Statistical Association, 83, 1184-1886. https://doi.org/10.1080/01621459.1988.10478718
  2. Carroll, R. J., Ruppert, D. and Stefanski, L. (1995). Measurement error in nonlinear models, Chapman and Hall, London.
  3. Dilaigle, A. and Gijbels, I. (2007). Frequent problems in calculating integrals and optimizing objective functions: A case study in density estimation. Statistics and Computing, 17, 349-355. https://doi.org/10.1007/s11222-007-9024-0
  4. Eggermont, P. and LaRiccia, V. (1997). Nonlinearly smoothed EM density estimation with augmented smoothing parameter selection for nonparametric deconvolution problems. Journal of the American Statistical Association, 92, 1451-1458. https://doi.org/10.1080/01621459.1997.10473666
  5. Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problem. Annals of Statistics, 19, 1257-1272. https://doi.org/10.1214/aos/1176348248
  6. Gunn, S. R. (1998). Support vector machines for classification and regression, Technical report, University of Southampton, Southampton, UK.
  7. Hall, P. and Qiu, P. (2005). Discrete-transform approach to deconvolution problems. Biometrika, 92, 135-148. https://doi.org/10.1093/biomet/92.1.135
  8. Hazelton, M. L. and Turlach, B. A. (2009). Nonparametric density deconvolution by weighted kernel estimators. Statistics and Computing, 19, 217-228. https://doi.org/10.1007/s11222-008-9086-7
  9. Koo, J.-Y. and Park, B. U. (1996). B-spline deconvolution based on the EM algorithm. Journal of Statistical Computation and Simulation, 54, 275-288. https://doi.org/10.1080/00949659608811735
  10. Lee, S. and Taylor, R. L.(2008). A note on support vector density estimation for the deconvolution problem. Communications in Statistics: Theory and Methods, 37, 328-336. https://doi.org/10.1080/03610920701653086
  11. Lee, S. (2010). A Support vector method for the deconvolution problem. Communications of the Korean Statistical Society, 17, 451-457. https://doi.org/10.5351/CKSS.2010.17.3.451
  12. Lee, S. (2012). A Note on deconvolution estimators when measurements errors are normal. Communications of the Korean Statistical Society, 19, 517-526. https://doi.org/10.5351/CKSS.2012.19.4.517
  13. Liu, M. C. and Taylor, R. L. (1989). A Consistent nonparametric density estimator for the deconvolution problem. The Canadian Journal of Statistics, 17, 427-438. https://doi.org/10.2307/3315482
  14. Louis, T. A. (1991). Using empirical Bayes methods in biopharmaceutical research. Statistics in Medicine, 10, 811-827. https://doi.org/10.1002/sim.4780100604
  15. Mendelsohn, J. and Rice, R. (1982). Deconvolution of micro uorometric histograms with B splines. Journal of the American Statistical Association, 77, 748-753.
  16. Mukherjee, S. and Vapnik, V. (1999). Support vector method for multivariate density estimation. Proceedings in Neural Information Processing Systems, 659-665.
  17. Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolutoin. Annals of Statistics, 27, 2033-2053. https://doi.org/10.1214/aos/1017939249
  18. Stefanski, L. and Carroll, R. J. (1990). Deconvoluting kernel density estimators. Statistics, 21, 169-184. https://doi.org/10.1080/02331889008802238
  19. Wang, X. and Wang, B. (2011). Deconvolution estimation in measurement error models: The R package decon. Journal of Statistical Software, 39, Issue 10.