DOI QR코드

DOI QR Code

Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature

  • Mudila, Harish (Department of Chemistry, G. B. Pant University of Agriculture & Technology) ;
  • Joshi, Varsha (Department of Chemistry, G. B. Pant University of Agriculture & Technology) ;
  • Rana, Sweta (Department of Chemistry, G. B. Pant University of Agriculture & Technology) ;
  • Zaidi, Mohmd. Ghulam Haider (Department of Chemistry, G. B. Pant University of Agriculture & Technology) ;
  • Alam, Sarfaraz (Polymer Division, Defense Materials Research Development & Establishment, (D.M.S.R.D.E.))
  • Received : 2014.01.16
  • Accepted : 2014.05.24
  • Published : 2014.07.31

Abstract

An attempt was made to investigate the effect of the preparation temperature on the electrocapacitive performance of polypyrrole (PPY)/graphene oxide (GO) nanocomposites (PNCs). For this purpose, a series of PNCs were prepared at various temperatures by the cetyltrimethylammonium bromide-assisted dilute-solution polymerization of pyrrole in presence of GO (wt%) ranging from 1.0 to 4.0 with ferric chloride as an oxidant. The formation of the PNCs was ascertained through Fourier-transform infrared spectrometry, X-ray diffraction spectra, scanning electron microscopy and simultaneous thermogravimetric-differential scanning calorimetry. The electrocapacitive performance of the electrodes derived from sulphonated polysulphone-bound PNCs was evaluated through cyclic voltammetry with reference to Ag/AgCl at a scan rate (V/s) ranging from 0.2 and 0.001 in potassium hydroxide (1.0 M). The incorporation of GO into the PPY matrix at a reduced temperature has a pronounced effect on the electrocapacitive performance of PNCs. Under identical scan rates (0.001 V/s), PNCs prepared at $10{\pm}1^{\circ}C$ render improved specific conductivity (526.33 F/g) and power density (731.19 W/Kg) values compared to those prepared at $30{\pm}1^{\circ}C$ (217.69 F/g, 279.43 W/Kg). PNCs prepared at $10{\pm}1^{\circ}C$ rendered a capacitive retention rate of ~96% during the first 500 cycles. This indicates the excellent cyclic stability of the PNCs prepared at reduced temperatures for supercapacitor applications.

Keywords

References

  1. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 41, 797 (2012). http://dx.doi.org/10.1039/c1cs15060j.
  2. Huang Y, Liang J, Chen Y. An overview of the applications of graphene-based materials in supercapacitors. Small, 8, 1805 (2012). http://dx.doi.org/10.1002/smll.201102635.
  3. Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L. Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater, 24, 6348 (2012). http://dx.doi.org/10.1002/adma.201202774.
  4. Ramya R, Sivasubramanian R, Sangaranarayanan MV. Conducting polymers-based electrochemical supercapacitors: progress and prospects. Electrochim Acta, 101, 109 (2013). http://dx.doi.org/10.1016/j.electacta.2012.09.116.
  5. Shulga YM, Baskakov SA, Abalyaeva VV, Efimov ON, Shulga NY, Michtchenko A, Lartundo-Rojas L, Moreno-R LA, Cabanas-Moreno JG, Vasilets VN. Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. J Power Sources, 224, 195 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.09.105.
  6. Sahoo S, Dhibar S, Hatui G, Bhattacharya P, Das CK. Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer, 54, 1033 (2013). http://dx.doi.org/10.1016/j.polymer.2012.12.042.
  7. Lai L, Wang L, Yang H, Sahoo NG, Tam QX, Liu J, Poh CK, Lim SH, Shen Z, Lin J. Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy, 1, 723 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.05.012.
  8. Wang J, Xu Y, Zhu J, Ren P. Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J Power Sources, 208, 138 (2012). http://dx.doi.org/10.1016/j.jpowsour.2012.02.018.
  9. Huh DS, Basavaraja C, Kim WJ. Polypyrrole/graphene oxide composites with improved conductivity and solubility. Plastics Research Online (February 6, 2012) http://dx.doi.org/10.2417/spepro.004061.
  10. Li J, Xie H. Synthesis of graphene oxide/polypyrrole nanowire composites for supercapacitors. Mater Lett, 78, 106 (2012). http://dx.doi.org/10.1016/j.matlet.2012.03.013.
  11. Han Y, Hao L, Zhang X. Preparation and electrochemical performances of graphite oxide/polypyrrole composites. Synth Met, 160, 2336 (2010). http://dx.doi.org/10.1016/j.synthmet.2010.09.008.
  12. Liu Y, Chu Y, Yang L. Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mater Chem Phys, 98, 304 (2006). http://dx.doi.org/10.1016/j.matchemphys.2005.09.025.
  13. Kassim A, Basar Z, Mahmud HNME. Effects of preparation temperature on the conductivity of polypyrrole conducting polymer. J Chem Sci, 114, 155 (2002). http://dx.doi.org/10.1007/BF02704308.
  14. Kaynak A, Beltran R. Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly(ethylene terephthalate) fabrics. Polym Int, 52, 1021 (2003). http://dx.doi.org/10.1002/pi.1195.
  15. Bufon CCB, Vollmer J, Heinzel T, Espindola P, John H, Heinze J. Relationship between chain length, disorder, and resistivity in polypyrrole films. J Phys Chem B, 109, 19191 (2005). http://dx.doi.org/10.1021/jp053516j.
  16. Ferenets M, Harlin A. Chemical in situ polymerization of polypyrrole on poly(methyl metacrylate) substrate. Thin Solid Films, 515, 5324 (2007). http://dx.doi.org/10.1016/j.tsf.2007.01.008.
  17. Chandra V, Kim KS. Highly selective adsorption of Hg2+ by polypyrrole-reduced graphene oxide composite. Chem Commun, 47, 3942 (2011). http://dx.doi.org/10.1039/C1CC00005E.
  18. Chitte HK, Bhat NV, Walunj VE, Shinde GN. Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in gas sensors. J Sensor Tech, 1, 47 (2011). http://dx.doi.org/10.4236/jst.2011.12007.
  19. Taunk M, Kapil A, Chand S. Chemical synthesis and low temperature electrical transport in polypyrrole doped with sodium bis(2-ethylhexyl) sulfosuccinate. J Mater Sci, 22, 136 (2012). http://dx.doi.org/10.1007/s10854-010-0102-2.
  20. Gu Z, Li C, Wang G, Zhang L, Li X, Wang W, Jin S. Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. J Polym Sci B, 48, 1329 (2010). http://dx.doi.org/10.1002/polb.22031.
  21. Konwer S, Boruah R, Dolui S. Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J Electron Mater, 40, 2248 (2011). http://dx.doi.org/10.1007/s11664-011-1749-z.
  22. Han J, Dai J, Zhou C. Guo R. Dilute cationic surfactant-assisted synthesis of polyaniline nanotubes and application as reactive support for various noble metal nanocatalysts. Polym Chem, 4, 313 (2013). http://dx.doi.org/10.1039/C2PY20536J.
  23. Jiang J, Luo DM, Qian D. Electrochemical capacitive property of polypyrrole/graphene oxide composites. J Jishou Univ Nat Sci, 33, 93 (2012). http://dx.doi.org/10.3969/j.issn.1007-2985.2012.03.022.
  24. Unnikrishnan L, Madamana P, Mohanty S, Nayak SK. Polysulfone/C30B nanocomposite membranes for fuel cell applications: effect of various sulfonating agents. Polym Plast Tech Eng, 51, 568 (2012). http://dx.doi.org/10.1080/03602559.2012.654580.
  25. Zhang TY, Zhang D. Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication. Bull Mater Sci, 34, 25 (2011). http://dx.doi.org/10.1007/s12034-011-0048-x.
  26. Mudila H, Zaidi MGH, Rana S, Joshi V, Alam S. Enhanced electrocapacitive performance of graphene oxide polypyrrole nanocomposites. Int J Chem Anal Sci, 4, 139 (2013). http://dx.doi.org/10.1016/j.ijcas.2013.09.001.
  27. Thakur S, Karak N. Green reduction of graphene oxide by aqueous phytoextracts. Carbon, 50, 5331 (2012). http://dx.doi.org/10.1016/j.carbon.2012.07.023.
  28. Liu K, Li Y, Xu F, Zuo Y, Zhang L, Wang H, Liao J. Graphite/poly (vinyl alcohol) hydrogel composite as porous ring skirt for artificial cornea. Mater Sci Eng C, 29, 261 (2009). http://dx.doi.org/10.1016/j.msec.2008.06.023.
  29. Qiao YS, Shen LZ, Dou T, Hu M. Polymerization and characterization of high conductivity and good adhension polypyrrole films for electromagnetic interference shielding. Chin J Polym Sci, 28, 923 (2010). http://dx.doi.org/10.1007/s10118-010-9175-x.
  30. Sonavane AC, Inamdar AI, Dalavi DS, Deshmukh HP, Patil PS. Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance. Electrochim Acta, 55, 2344 (2010). http://dx.doi.org/10.1016/j.electacta.2009.11.087.
  31. Chen W, Xue G. Formation of conducting polymer nanostructures with the help of surfactant crystallite templates. Front Mater Sci China, 4, 152 (2010). http://dx.doi.org/10.1007/s11706-010-0016-1.
  32. Qu B, Xu YT, Lin SJ, Zheng YF, Dai LZ. Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation. Synth Met, 160, 732 (2010). http://dx.doi.org/10.1016/j.synthmet.2010.01.012.
  33. Zhao Y, Zhan L, Tian J, Nie S, Ning Z. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole: graphene in alkaline medium. Electrochim Acta, 56, 1967 (2011). http://dx.doi.org/10.1016/j.electacta.2010.12.005.
  34. Afanasov IM, Shornikova ON, Avdeev VV, Lebedev OI, Van Tendeloo G, Matveev AT. Expanded graphite as a support for Ni/carbon composites. Carbon, 47, 513 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.034.
  35. El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi E, Qaiss MA. Piezoelectric $\beta$-polymorph formation and properties enhancement in graphene oxide: PVDF nanocomposite films. Appl Surf Sci, 258, 7668 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.04.118.
  36. Wojtoniszak M, Chen X, Kalenczuk RJ, Wajda A, Lapczuk J, Kurzewski M, Drozdzik M, Chu PK, Borowiak-Palen E. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B, 89, 79 (2012). http://dx.doi.org/10.1016/j.colsurfb.2011.08.026.
  37. Li S, Lu X, Xue Y, Lei J, Zheng T, Wang C. Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. mailto:xflu@jlu.edu. cnPLoS One, 7, e43328 (2012). http://dx.doi.org/10.1371/journal.pone.0043328.
  38. Gudarzi MM, Sharif F. Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. eXPRESS Polym Lett, 6, 1017 (2012). http://dx.doi.org/10.3144/expresspolymlett.2012.107.
  39. Luo YL, Fan LH, Xu F, Chen YS, Zhang CH, Wei QB. Synthesis and characterization of Fe3O4/PPy/P(MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics. Mater Chem Phys, 120, 590 (2010). http://dx.doi.org/10.1016/j.matchemphys.2009.12.002.
  40. Ramya R, Sangaranarayanan MV. Analysis of polypyrrole-coated stainless steel electrodes: estimation of specific capacitances and construction of equivalent circuits. J Chem Sci, 120, 25 (2008). http://dx.doi.org/10.1007/s12039-008-0004-5.
  41. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH. In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer, 51, 5921 (2010). http://dx.doi.org/10.1016/j.polymer.2010.10.014.
  42. Nie G, Qu L, Xu J, Zhang S. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim Acta, 53, 8351 (2008). http://dx.doi.org/10.1016/j.electacta.2008.06.058.

Cited by

  1. Electrochemical capacitance of a carbon quantum dots–polypyrrole/titania nanotube hybrid vol.5, pp.109, 2015, https://doi.org/10.1039/C5RA16538E
  2. Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes vol.18, 2016, https://doi.org/10.5714/CL.2016.18.043