DOI QR코드

DOI QR Code

AUTOCOMMUTATORS AND AUTO-BELL GROUPS

  • Moghaddam, Mohammad Reza R. (Department of Mathematics Khayyam Higher Education Institute, Centre of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad) ;
  • Safa, Hesam (Department of Mathematics Faculty of Basic Sciences University of Bojnord) ;
  • Mousavi, Azam K. (Faculty of Mathematical Sciences International Branch Ferdowsi University of Mashhad, Centre of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad)
  • Received : 2012.05.21
  • Published : 2014.07.31

Abstract

Let x be an element of a group G and be an automorphism of G. Then for a positive integer n, the autocommutator $[x,_n{\alpha}]$ is defined inductively by $[x,{\alpha}]=x^{-1}x^{\alpha}=x^{-1}{\alpha}(x)$ and $[x,_{n+1}{\alpha}]=[[x,_n{\alpha}],{\alpha}]$. We call the group G to be n-auto-Engel if $[x,_n{\alpha}]=[{\alpha},_nx]=1$ for all $x{\in}G$ and every ${\alpha}{\in}Aut(G)$, where $[{\alpha},x]=[x,{\alpha}]^{-1}$. Also, for any integer $n{\neq}0$, 1, a group G is called an n-auto-Bell group when $[x^n,{\alpha}]=[x,{\alpha}^n]$ for every $x{\in}G$ and each ${\alpha}{\in}Aut(G)$. In this paper, we investigate the properties of such groups and show that if G is an n-auto-Bell group, then the factor group $G/L_3(G)$ has finite exponent dividing 2n(n-1), where $L_3(G)$ is the third term of the upper autocentral series of G. Also, we give some examples and results about n-auto-Bell abelian groups.

Keywords

References

  1. R. Brandl and L.-C. Kappe, On n-Bell groups, Comm. Algebra 17 (1989), no. 4, 787-807. https://doi.org/10.1080/00927878908823759
  2. M. Deaconescu, G. Silberberg, and G. L. Walls, On commuting automorphisms of groups, Arch. Math. (Basel) 79 (2002), no. 6, 423-429. https://doi.org/10.1007/BF02638378
  3. M. Deaconescu and G. L. Walls, Cyclic groups as autocommutator groups, Comm. Al-gebra 35 (2007), no. 1, 215-219.
  4. C. Delizia, M. R. R. Moghaddam, and A. Rhemtulla, The structure of Bell groups, J. Group Theory 9 (2006), no. 1, 117-125.
  5. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.4.12, (2008), (http://www.gap-system.org/).
  6. P. V. Hegarty, The absolute centre of a group, J. Algebra 169 (1994), no. 3, 929-935. https://doi.org/10.1006/jabr.1994.1318
  7. A. R. Jamali, Some new non-abelian 2-groups with abelian automorphism groups, J. Group Theory 5 (2002), no. 1, 53-57.
  8. L.-C. Kappe and R. F. Morse, Groups with 3-abelian normal closures, Arch. Math. (Basel) 51 (1988), no. 2, 104-110. https://doi.org/10.1007/BF01206466
  9. M. R. R. Moghaddam, M. Farrokhi, and H. Safa, Some properties of 2-auto-Engel groups, Submitted.
  10. M. R. R. Moghaddam, F. Parvaneh, and M. Naghshineh, The lower autocentral series of abelian groups, Bull. Korean Math. Soc. 48 (2011), no. 1, 79-83. https://doi.org/10.4134/BKMS.2011.48.1.079
  11. M. R. R. Moghaddam and H. Safa, Some properties of autocentral automorphisms of a group, Ricerche Mat. 59 (2010), no. 2, 257-264. https://doi.org/10.1007/s11587-010-0085-6
  12. D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Parts 1 and 2, Springer-Verlag, 1972.
  13. A. Tortora, Some properties of Bell groups, Comm. Algebra 37 (2009), no. 2, 431-438. https://doi.org/10.1080/00927870802248613

Cited by

  1. Perfect groups and normal subgroups related to an automorphism 2016, https://doi.org/10.1007/s11587-016-0307-7