DOI QR코드

DOI QR Code

4H-SiC기판 위에 Aerosol Deposition으로 증착된 Al2O3박막의 후열처리 효과

Post Annealing Effect on the Characteristics of Al2O3 Thin Films Deposited by Aerosol Deposition on 4H-SiC

  • 유수산나 (광운대학교 전자재료공학과) ;
  • 강민석 (광운대학교 전자재료공학과) ;
  • 김홍기 (광운대학교 전자재료공학과) ;
  • 이영희 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Yu, Susanna (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kang, Min-Seok (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Hong-Ki (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Young-Hie (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 투고 : 2014.06.12
  • 심사 : 2014.07.16
  • 발행 : 2014.08.01

초록

$Al_2O_3$ films on silicon carbide were fabricated by Aerosol deposition with annealing temperature at $800^{\circ}C$ and $1,000^{\circ}C$. The effect of thermal treatment on physical properties of $Al_2O_3$ thin films has been investigated by XRD (X-ray diffraction), AFM (atomic force microscope), SEM (scanning electron microscope), and AES (auger electron spectroscopy). Also electrical properties have been investigated by Keithley 4,200 semiconductor parameter analyzer to explain the interface trapped charge density ($D_{it}$), flatband voltage ($V_{FB}$) and leakage current ($I_o$). $Al_2O_3$ films become crystallized with increasing temperature by calculating full width at half maximum (FWHM) of diffraction peaks, also surface morphology is observed by topography measurement in non-contact mode AFM. $D_{it}$ was $2.26{\times}10^{-12}eV^{-1}.cm^{-2}$ at $800^{\circ}C$ annealed sample, which is the lowest value in all samples. Also the sample annealed at $800^{\circ}C$ has the lowest leakage current of $4.89{\times}10^{-13}A$.

키워드

참고문헌

  1. H. MorKoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., 76, 1363 (1994). https://doi.org/10.1063/1.358463
  2. P. Masri, Surf. Sci. Rep., 48, 1.-SIC (2002). https://doi.org/10.1016/S0167-5729(02)00099-7
  3. Y. Sato, Y. Uemichi, K. Nishikawa, and S. Yoshikado, J. Ceram. Soc. Jpn., 18, 092056 (2011).
  4. J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006). https://doi.org/10.1111/j.1551-2916.2006.01030.x
  5. Y. Y. Wang, H. J. Shen, Y. Bai, Y. D. Tang, K. A. Liu, C. Z. Li, and X. Y. Liu, Chin. Phys. B, 22, 078102 (2013). https://doi.org/10.1088/1674-1056/22/7/078102
  6. J. C. Park, Y. J, Yoon, H. T. Kim, E. H. Koo, S. M. Nam, J. H. Kim, and K, B. Shim, Journal of the J. Kor. Ceram. Soc., 45, 411 (2008). https://doi.org/10.4191/KCERS.2008.45.7.411
  7. D. W. Lee, H. J. Kim, Y. H. Kim, Y. H. Yun, and S. M. Nam, J. Amer. Ceram. Soc., 94, 3131 (2011). https://doi.org/10.1111/j.1551-2916.2011.04493.x
  8. A. L. Patterson, Phys. Rev., 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  9. T. W. Na, J. M. Kim, M. K. Kim, and H. J. Kim, J. Kor. Phys. Soc., 59, 452 (2011). https://doi.org/10.3938/jkps.59.452
  10. C. K. Yew, J. H. Moon, D. Eom, H. J. Kim, W. Ahng, and N. K. Kim, ESL, 10, H69-H71 (2007).
  11. D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, New York, 1998).
  12. C. M. Tanner, P. Ya-Chuan, C. Frewin, S. E. Saddow, and J. P. Chang, Appl. Phys. Lett., 91, 203510 (2007). https://doi.org/10.1063/1.2805742